
ASHידכ תושעל תא הז השק הז אל ומכ ב
רפס

λ
λ λ

λ

λ
λ

Digital Circuits in CλaSH

Functional Speciications and Type-Directed Synthesis

Christiaan P.R. Baaij

Digital Circuits in CλaSH

Functional Speciications and Type-Directed Synthesis

Christiaan P.R. Baaij

Members of the dissertation committee:

Prof. dr. ir. G.J.M. Smit University of Twente (promotor)
Dr. ir. J. Kuper University of Twente (assistant-promotor)

Prof. dr. J.C. van de Pol University of Twente
Prof. dr. ir. B.R.H.M. Haverkort University of Twente
Prof. dr. M. Sheeran Chalmers University of Technology

Prof. dr. ir. T. Schrijvers Katholieke Universiteit Leuven
Prof. dr. K. Hammond University of St. Andrews
Prof. dr. P.M.G. Apers University of Twente (chairman and secretary)

Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, Computer Architecture for Embedded Systems (CAES) group

S(o)OS
Service-oriented

Operating Systems

his research is conducted within the Service-oriented Operating
Systems (S(o)OS) project (Grant Agreement No. 248465) supported
under the FP7-ICT-2009.8.1 program of the European Commission.

his research is conducted within the Programming Large Scale
Heterogeneous Infrastructure (Polca) project (Grant AgreementNo.
610686) supported under the FP7-ICT-2013.3.4 program of the Eu-
ropean Commission.

CTIT
CTIT Ph.D. thesis Series No. 14-335
Centre for Telematics and Information Technology
University of Twente, P.O. Box 217, NLś7500 AE Enschede

Copyright © 2014 by Christiaan P.R. Baaij, Enschede, he Nether-
lands. his work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

his thesis was typeset using LATEX2ε , TikZ, and Sublime Text. his
thesis was printed by Gildeprint Drukkerijen, he Netherlands.

ISBN 978-90-365-3803-9

ISSN 1381-3617 (CTIT Ph.D. thesis Series No. 14-335)

DOI 10.3990/1.9789036538039

http://www.utwente.nl
http://www.soos-project.eu
http://www.soos-project.eu
http://www.soos-project.eu
http://www.polca-project.eu
http://www.polca-project.eu
http://www.polca-project.eu
http://www.utwente.nl/ctit
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3990/1.9789036538039

Digital Circuits in CλaSH

Functional Specifications and Type-Directed Synthesis

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magniicus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 23 januari 2015 om 14:45 uur

door

Christiaan Pieter Rudolf Baaij

geboren op 1 februari 1985
te Leiderdorp

Dit proefschrit is goedgekeurd door:

Prof. dr. ir. G.J.M. Smit (promotor)
Dr. ir. J. Kuper (assistent promotor)

Copyright © 2014 Christiaan P.R. Baaij
ISBN 978-90-365-3803-9

v

Abstract

Over the last three decades, the number of transistors used in microchips has in-
creased by three orders of magnitude, from millions to billions. he productivity
of the designers, however, lags behind. Designing a chip that uses ever more tran-
sistors is complex, but doable, and is achieved by massive replication of function-
ality. Managing to implement complex algorithms, while keeping non-functional
properties, such as area and gate propagation latency, within desired bounds, and
thoroughly verifying the design against its speciication, are the main diiculties in
circuit design.

It is diicult to measure design productivity quantitatively; transistors per hour
would not be a good measure, as high transistor counts can be achieved by repli-
cation. As a motivation for our work we make a qualitative analysis of the tools
available to circuit designers. Furthermore, we show how these tools manage the
complexity, and hence improve productivity. Here we see that progress has been
slow, and that the same techniques have been used for over 20 years. Industry
standard languages, such as VHDL and (System)Verilog, do provide means for
abstractions, but they are distributed over separate language constructs and have
ad hoc limitations. What is desired is a single abstraction mechanism that can
capture most, if not all, common design patterns. Once we can abstract our com-
mon patterns, we can reason about them with rigour. Rigorous analysis enables us
to develop correct-by-construction transformations that capture trade-ofs in the
non-functional properties. hese correct-by-construction transformations give us
a straightforward path to reaching the desired bounds on non-functional properties,
while signiicantly reducing the veriication burden.

We claim that functional languages can be used to raise the abstraction level in
circuit design. Especially higher-order functional languages, where functions are
irst-class and can be manipulated by other functions, ofer a single abstraction
mechanism that can capture many design patterns. An additional property of
functional languages that make them a good candidate for circuit design is purity,
which means that functions have no side-efects. When functions are pure, we
can reason about their composition and decomposition locally, thus enabling us
to reason formally about transformations on these functions. Without side-efects,
synthesis can derive highly parallel circuits from a functional description because
it only has to respect the direct data dependencies.

In existing work, the functional language Haskell has been used as a host for em-
bedded hardware description languages. An embedded language is actually a set of

vi
data types and expressions described within the host language. hese data types
and expressions then act like the keywords of the embedded language. Functions
in the host language are subsequently used to model functions in the embedded
language. Althoughmany features of the host language can be used to model equiv-
alent behaviour in the embedded language, this is not true for all features. One of
the most important features of the host language that cannot directly be used in
the embedded language, are features that model choice, such as pattern matching.

his thesis explores the idea of using the functional language Haskell directly as a
hardware speciication language, and move beyond the limitations of embedded
languages. Additionally, where applicable, we can use normal functions from exist-
ing Haskell libraries to model the behaviour of our circuits.

here are multiple ways to interpret a function as a circuit description. his thesis
makes the choice of interpreting a function deinition as a structural composition of
components. his means that every function application is interpreted as the com-
ponent instantiation of the respective sub-circuit. Combinational circuits are then
described as functions manipulating algebraic data types. Synchronous sequential
circuits are described as functions manipulating ininite streams of values. In order
to reduce the cognitive burden, and to guarantee synthesisable results, streams can-
not be manipulated directly by the designer. Instead, our system ofers a limited
set of combinators that can safely manipulate streams, including combinators that
map combinational functions over streams. Additionally, the system ofers streams
that are explicitly synchronised to a particular clock and thus enable the design of
multi-clock circuits. Proper synchronisation between clock domains is checked by
the type system.

his thesis describes the inner workings of our CλaSH compiler, which translates
the aforementioned circuit descriptions written in Haskell to low-level descriptions
in VHDL. Because the compiler uses Haskell directly as a speciication language,
synthesis of the description is based on (classic) static analysis. he challenge then
becomes the reduction of the higher-level abstractions in the descriptions to a form
where synthesis is feasible. his thesis describes a term rewrite system (with bound
variables) to achieve this reduction. We prove that this term rewrite system always
reduces a polymorphic, higher-order circuit description to a synthesisable variant.
he only restriction is that the root of the function hierarchy is not polymorphic
nor higher-order. here are, however, no restrictions on the use of polymorphism
and higher-order functionality in the rest of the function hierarchy.

Even when descriptions use high-level abstractions, the CλaSH compiler can syn-
thesize eicient circuits. Case studies show that circuits designed in Haskell, and
synthesized with the CλaSH compiler, are on par with hand-written VHDL, in both
area and gate propagation delay. Even in the presence of contemporary Haskell id-
ioms and abstractions to write imperative code (for a control-oriented circuit),
does the CλaSH compiler create results with decent non-functional properties.
To emphasize that our approach enables correct-by-construction descriptions, we
demonstrate abstractions that allow us to automatically compose components that

vii
use back-pressure as their synchronisation method. Additionally, we show how
cycle delays can be encoded in the type-signatures of components, allowing us to
catch any synchronisation error at compile-time.

his thesis thus shows the merits of using a modern functional language for circuit
design. he advanced type system and higher-order functions allow us to design
circuits that have the desired property of being correct-by-construction. Finally,
our synthesis approach enables us to derive eicient circuits from descriptions that
use high-level abstractions.

viii

ix

Samenvatting

Gedurende de laatste drie decennia is het aantal transistors in een processor met
drie ordegroottes toegenomen, van miljoenen naar miljarden. De productiviteit
van de ontwerpers loopt hier echter op achter. Het ontwerpen van een processor
met telkens meer transistors is complex, maar doenlijk, en wordt bereikt door het
veelvuldig kopiëren van functionaliteit. Het implementeren van complexe algorit-
mes, en het daarbij in toom houden van niet-functionele aspecten, zoals opper-
vlakte en propagatievertraging, en het zorgvuldig veriiëren van het uiteindelijke
ontwerp, zijn de voornaamste moeilijkheden in het ontwerpen van digitale circuits.

Het is moeilijk om productiviteit van ontwerpers kwantitatief te bepalen; transis-
tors per uur is geen goede maat, omdat hoge transistoraantallen kunnen worden
bereikt door replicatie van functionaliteit. Als motivatie voor ons werk maken we
een kwalitatieve analyse van de sotware die beschikbaar is voor ontwerpers van
digitale circuits. Hierbij laten we zien hoe deze sotware helpt bij het beheersen
van de complexiteit en dus de productiviteit verhoogt. We zien dan een geringe
voortgang, waarbij dezelfde technieken al meer dan 20 jaar worden gebruikt. Talen
die de standaard zijn in de industrie, zoals VHDL en (System)Verilog, verschafen
wel abstractiemogelijkheden, maar deze zijn verspreid over verschillende delen van
de taal en hebben ad hoc beperkingen. Het is wenselijk om één abstractiemecha-
nisme te hebben waarmee we veel, dan niet alle, ontwerppatronen kunnen uitdruk-
ken. Wanneer we onze ontwerppatronen kunnen abstraheren, kunnen we er ook
grondig over redeneren. Grondige analyses staan ons toe om inherent correcte
transformaties te ontwerpen die afwegingen van niet-functionele eigenschappen
uitdrukken. Omdat deze transformaties inherent correct zijn, is het mogelijk om
tot een ontwerp te komenmet de gewenste niet-functionele eigenschappen, zonder
dat we extra veriicatiestappen hoeven te ondernemen.

Wij beweren dat functionele talen zeer geschikt zijn om het abstractieniveau, van
het ontwerpen van digitale circuits, naar een hoger niveau te tillen. Zeker hogere-
orde functies, waar functies andere functies kunnen bewerken, zijn geschikt als
enkel abstractiemechanisme voor vele ontwerppatronen. Een andere eigenschap
van functionele talen die ze geschikt maakt voor het ontwerpen van digitale circuits
is dat functies vrij zijn van nevenefecten. Omdat functies geen nevenefecten heb-
ben kunnenwe op lokaal niveau redeneren over de compositie en decompositie van
functies, en zodanig ook formeel redeneren over transformaties van deze functies.
Vrij van nevenefecten, kan het syntheseproces zeer parallelle circuits aleiden van
zo’n functionele beschrijving, omdat er alleen rekening gehouden hoet te worden
met directe afhankelijkheden.

x
In bestaand werk is er gekeken naar het gebruik van de functionele taal Haskell
als kadertaal voor ingebedde hardwarebeschrijvingstalen. Zo’n ingebedde taal is
eigenlijk een verzameling van datatypes en functies beschreven in de kadertaal,
waar deze functies en datatypes dienen als trefwoorden van de ingebedde taal.
Alhoewel vele aspecten van de kadertaal gebruikt kunnen worden om equivalente
aspecten in de ingebedde taal uit te drukken, geldt dat niet zo voor alle aspecten
van de kadertaal. Eén van de belangrijkste aspecten van de kadertaal die niet in de
ingebedde taal gebruikt kanworden, zijn de aspecten die keuze uit kunnen drukken,
zoals patroonherkenning.

Dit proefschrit verkent het idee om de functionele taal Haskell direct als hardwa-
resbeschrijvingstaal te gebruiken, zodat we niet meer onderhevig hoeven te zijn
aan de beperkingen van ingebedde talen. Daarbij is het dan ook mogelijk, waar
dat van toepassing is, om direct functies uit de standaardbibliotheken te gebruiken
voor het beschrijven van digitale circuits.

Er zijn meerdere manieren om een functie als digitaal circuit te interpreteren. In
dit proefschrit kiezen wij ervoor om functies te interpreteren als een structurele
compositie van componenten. Dit betekent dat elke toegepaste functie wordt geïn-
terpreteerd als een nieuwe instantie van het overeenkomstige circuit. Combinatori-
sche circuits worden beschreven als functies die algebraïsche datatypes bewerken.
Synchroon sequentiële circuits worden beschreven als functies die oneindig lange
reeksen van waarden bewerken. Om de cognitieve last te verlichten, en om synthe-
tiseerbare resultaten te garanderen, kunnen zulke oneindige reeksen van waarden
niet direct bewerkt kunnen worden de ontwerper. In plaats daarvan biedt het sys-
teem een beperkte set van functies die de ontwerper toe staan de reeks op een
bepaalde manier te bewerken, zoals een functie die elementsgewijs een combinato-
rische functie toepast op de reeks van waarden. Daarbij zijn er reeksen die expliciet
zijn gekoppeld aan een speciieke klok, welk het mogelijk maakt om circuits te
ontwerpen met meerdere klokken. Correcte overgangen tussen de klokdomeinen
worden gecontroleerd door het typesysteem.

Dit proefschrit beschrijt de interne werking van de CλaSH compiler, welk eerder-
genoemde circuitbeschrijvingen in Haskell omzet naar laag-niveau beschrijvingen
inVHDL.Omdat de compilerHaskell direct als speciicatietaal gebruikt, is synthese
gebaseerd op (klassieke) statische analyse. De uitdaging zit dan in het reduceren
van de hoog-niveau abstractiemechanismen die zich bevinden in de beschrijvingen
naar een vorm waar synthese doenlijk is. Dit proefschrit beschrijt een termher-
schrijfsysteem (met gebonden variabelen) om deze reductie te bereiken. We bewij-
zen dat dit termherschrijfsysteem altijd polymorfe hogere-orde beschrijvingen van
circuits reduceert naar een synthetiseerbare variant. De enige beperking is dat de
functie bovenaan in de functiehiërarchie niet polymorf noch van hogere-orde is.
Er zijn echter geen beperkingen in de rest van die functiehiërarchie wat betret het
gebruik van polymorisme en hogere-orde functionaliteit.

Zelfs wanneer de beschrijvingen abstracties van een hoog niveau bevatten is de
CλaSH compiler in staat hiervan eiciënte circuits te synthetiseren. Casestudies

xi
laten zien dat circuits die zijn ontworpen in Haskell, en gesynthetiseerd zijn met
CλaSH, gelijkwaardig zijn aan circuits direct ontworpen in VHDL, zowel in grootte
als in propagatievertraging. Ook wanneer eigentijdse Haskell idiomen worden
gebruikt om imperatieve code (voor een controlegeoriënteerd circuit) te schrij-
ven is de CλaSH compiler in staat om resultaten te genereren met degelijke niet-
functionele aspecten. Om te benadrukken dat onze aanpak de gelegenheid geet
om inherent correcte beschrijvingen te ontwerpen, demonstreren wij abstracties
die het mogelijk maken om circuits met elkaar te verbinden die tegendruk gebrui-
ken als synchronisatiemethode. Ook laten we zien hoe klokslagvertragingen aan
de typesignaturen van componenten kunnen worden toegevoegd, zodat we incor-
recte synchronisatie tussen componenten al kunnen afvangen op het moment van
ontwerpen.

Dit proefschrit laat dus zien waarom een moderne functionele taal zeer geschikt
is voor het ontwerpen van digitale circuits. Het geavanceerde typesysteem en de
hogere-orde functies maken het mogelijk om ontwerpen te maken die inherent
correct zijn. Tenslotte zorgt onze syntheseaanpak ervoor dat we eiciënte circuits
kunnen aleiden van beschrijvingenwelke abstracties van een hoog niveau bevatten.

xii

xiii

Dankwoord

November 2008, ik was op zoek naar een masteropdracht, januari 2015, ik ga pro-
moveren. Zes jaar lang gewerkt aan hetzelfde onderwerp, waarvan het laatste jaar
voornamelijk aan dit boekje. Ondertussen werken er al meerdere mensen, zelfs van
buiten de vakgroep, met de sotware die er is geschreven, iets waar ik zeer tevreden
over ben. Ook al geloof je in je eigen verhaal, geet het toch een grote voldoening
wanneer ook andere mensen jouw werk nuttig en interessant vinden.

Gedurende deze reis van zes jaar zijn er vele mensen die mij hebben geholpen met
mijn werk, en nog belangrijker, ze hebben er voor gezorgd dat ik het altijd naar
mijn zin heb gehad. Daarvoor wil ik hun graag bedanken.

Jan, voor de introductie tot de beste manier van programmeren, maar ook onze
plezierige en uitgebreide discussies tijdens de reizen door heel Europa. Bij de eerste
projectvergaderingen van SoOS had ik echt het gevoel alsof we daar niks hadden
gedaan, maar daar wist jij dan altijd wel weer een positieve draai aan te geven. Nu
weet ik inmiddels dat niet alles in twee dagen geregeld kan worden. Gerard, voor
het zorgen voor een plek waar ik de kans kreeg om onderzoek te doen wat ik leuk
vind, en, wat toch zeker heet bijgedragen dat ik wilde gaan promoveren, dat je een
groep hebt gecreëerd waar ik me als masterstudent volwaardig lid van de groep
voelde.

Koen, een goed klankboord voor al jouw continue wiskunde problemen was ik
nooit, maar het is wel altijd gezellig met jou op de kamer. Of je nu zelfs een gevatte
opmerking maakt, of onbedoeld een opmerking maakt waar iemand anders een
gevat weerwoord op heet, zorg je altijd voor veel humor op de groep. Arjan en
Philip, voor het helpen bij het oplossen van problemen van een zekere functionele
aard. Gerald, voor de eerste verkenning van tijdsannotaties op de functionele be-
schrijvingen. Rinse, Peter, Ruud, Jaco, Erwin, hoewel de compiler natuurlijk altijd
wel werkte op mijn computer met mijn voorbeelden, ben ik toch blij met de vele
testcode en bugreports die door jullie zijn geleverd. Jochem, voor de interessante
discussies over bitcoin en andere politieke en inanciële wereldzaken. Marlous,
helma, en Nicole, voor het regelen van hotels, vliegreizen, en nog zo vele andere
zaken. Marloes voor een gezellige afsluiting van de dag wanneer we samen naar
huis ietsen. Karel en Tom, voor de mooie gesprekken tijdens pauzes, borrels, en
onder het gamen, en natuurlijk onze gedeelde waardering voor ilms met een hoog
TSH¹ gehalte.

1Deze zal je niet terugvinden in de acronymenlijst.

xiv
Tenslotte, mijn geliefde Alexandra, voor het geduldig aanhoren als ik je terloops
vertel dat ik de volgende dag voor eenweekweg ben voor conferentie, voor het vrien-
delijk herinneren dat de buren ook mijn geram op de toetsenbordplank kunnen
horen, en het me bijstaan in vele achtereenvolgende weekenden toen ik doorwerkte
aan dit boekje.

Christiaan
Enschede, december 2014

xv

Contents

1 Introduction 1

1.1 Hardware Description Languages 3

1.2 Functional Hardware Description Languages 6
1.2.1 Sequential logic . 7
1.2.2 Higher level abstractions . 9
1.2.3 Challenges in synthesising functional HDLs to circuits 10

1.3 Research questions . 11

1.4 Approach and contributions of the thesis 11

1.5 Structure of the thesis . 13

2 Hardware Description Languages 15

2.1 Introduction . 15

2.2 Standard hardware description languages 16
2.2.1 VHDL . 16
2.2.2 Verilog . 18
2.2.3 SystemVerilog . 19
2.2.4 BlueSpec SystemVerilog . 20

2.3 Functional Languages . 21
2.3.1 Conventional Languages . 21
2.3.2 Embedded Languages . 26

2.4 Conclusions . 32
2.4.1 Standard Languages . 32
2.4.2 Functional Languages . 33

3 CAES Language for Synchronous Hardware 37

3.1 Introduction . 37
3.1.1 A structural view . 38

3.2 Combinational logic . 39
3.2.1 Function abstraction and application 39
3.2.2 Types . 40
3.2.3 Choice . 42

xvi

C
o
n
t
en

t
s

3.3 Higher level abstractions . 45
3.3.1 Polymorphism . 45
3.3.2 Higher-order functions . 48

3.4 Sequential logic . 52
3.4.1 Synchronous sequential circuits 53
3.4.2 A safe interface for Signal . 56
3.4.3 Abstractions over Signal . 58
3.4.4 Multiple clock domains . 61

3.5 Conclusions and future work . 66
3.5.1 Future work . 68

4 Type-Directed Synthesis 71

4.1 Introduction . 71
4.1.1 Netlists & Synthesis . 72

4.2 Compiler pipeline . 74
4.2.1 System FC . 75
4.2.2 Normal form . 87
4.2.3 From normalised System FC to a netlist 88

4.3 Normalisation . 95
4.3.1 Eliminating non-representable values 97
4.3.2 Completeness of non-representable value removal 105
4.3.3 Termination of non-representable value removal 115
4.3.4 Simpliication . 120

4.4 Discussion . 125
4.4.1 Properties of the normalisation phase 125
4.4.2 Correspondence operational semantics and netlists 126
4.4.3 Recursive descriptions . 127

4.5 Conclusions . 128
4.5.1 Future work . 128

5 Advanced aspects of circuit design in CλaSH 135

5.1 Introduction . 135

5.2 Streaming reduction circuit . 136

5.3 CλaSH demonstrator circuit . 141

5.4 Correct-by-construction compositions 148
5.4.1 Back pressure . 148
5.4.2 Delay annotations . 154

5.5 Discussion . 158

xvii

C
o
n
t
en

t
s

6 Conclusions 163

6.1 Contributions . 165

6.2 Recommendations . 165

A First Class Patterns in Kansas Lava 169

B Synchronisation Primitive 173

C System FC 177

D Preservation of the rewrite rules 191

Acronyms 197

Bibliography 199

List of Publications 207

xviii

1

1
Introduction

In 1985¹, Intel released the 80386, a consumer-grade central processing unit (CPU)
that had around 275.000 transistors. he Intel 80486, released 4 years later, was the
irst x86 CPU that crossed the 1 million transistor boundary. he largest available
chip today, in terms of transistor count, is NVIDIA’s GK110 GPU rounding out
at about 7 billion transistors. Nearly three decades of technology scaling have
thus increased the transistor count by three orders of magnitude: from millions to
billions.

While transistor budgets grew by three orders of magnitude over three decades,
it is much harder to determine whether the productivity of chip designer grew
equally fast over the years. Figure 1.1 sets out the R&D budget of NVIDIA against
the transistor count of their GPUs. We choose NVIDIA as their R&D is spent
on a small product line, where the main product line is most likely taking up the
largest part of their budget. If we would consider transistors per dollar spent as
a measure for productivity, then NVIDIA’s productivity is spectacular: while its
R&D budget grows linearly, the number of transistors used in their GPU grows
(almost) exponentially.

Such spectacular productivity growth is of course unlikely; it would have beenwide-
spread knowledge within the community if it would be true. Using the number of
transistors as a measure for productivity is not a particularly good measure, these
high transistor counts are achieved because GPUs are highly regular. GPUs ill
their transistor budgets through replication: they consist out of hundreds, if not
thousands, of identical cores. he same story holds for modern CPUs, for both
mobile and desktop systems: they have multiple cores, sometimes in the double
digits, and megabytes of cache memory. As replication is straightforward, the real
complexity of these designs lies with their individual computational units and the
composition of these units. When we would measure productivity in terms of
transistors used for these individual units, the results are indeed not as spectacular.

1Chosen as a reference as it corresponds to the author’s date of birth.

2

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

1998 2000 2002 2004 2006 2008 2010 2012

106

107

108

109

1010

nv3nv3

nv10nv10
nv15nv15

nv20nv20

nv25nv25
nv38nv38

nv40nv40

g70g70

g80g80

g92g92
gt200gt200

gk110gk110

Year of introduction

Tr
an
si
st
or
s

2000 2002 2004 2006 2008 2010 2012 2014

0

0.2

0.4

0.6

0.8

1

1.2

⋅109

nv10nv10nv15nv15

nv20nv20
nv25nv25

nv38nv38

nv40nv40

g70g70

g80g80
g92g92

gt200gt200

gk110gk110

Year of introduction

R
&
D
bu
dg
et
(d
ol
la
r)

Figure 1.1 ś NVIDIA: GPU transistors vs. R&D budget²

We can derive from the above that, measuring productivity quantitatively is not
straightforward; actually, we are not aware of anymeasure in circuit design that can
give a good indication for productivity. We can still, however, try to qualitatively
determine how the tools and methodologies have improved productivity over the
years, and ind outwhere there is room for even further improvement. Wewill focus
on the tools that help shape the design, and serve as the main implementation tools
for digital circuits: hardware description languages (HDLs).

2Transistor counts are copied from http://en.wikipedia.org/wiki/Transistor_count#

GPUs. R&D budget are as reported on the annual 10-K reports (http://investor.nvidia.com/
sec.cfm)

http://en.wikipedia.org/wiki/Transistor_count#GPUs
http://en.wikipedia.org/wiki/Transistor_count#GPUs
http://investor.nvidia.com/sec.cfm
http://investor.nvidia.com/sec.cfm

3

1.
1
ś
H
a
r
d
w
a
r
e
D
es
c
r
ip
t
io
n
L
a
n
g
u
a
g
es

1.1 Hardware Description Languages

he two most commonly used HDLs, VHDL and Verilog, were introduced when
industry shited circuit design towards very-large-scale integration (VLSI). At that
time, these HDLs were used for the documentation and simulation of circuits that
were already designed in a diferent format, for example with schematic capture
tools. It is the advent of logic synthesis (and automated place & route) that really
pushed VHDL and Verilog to the forefront of digital circuit design. Logic synthesis
resulted in an incredible productivity boost compared to schematic capture tools
and the manual layout process that were common practise until that time.

hese logic synthesis tools work on register-transfer level (RTL) descriptions of a
circuit. RTL describes a circuit in terms of the composition of the signals between
registers, and the logical operations performed on those signals. In order to raise
the abstraction level even further, and hence improve the productivity of circuit
designer, the next stepwas to just describe the behaviour of the circuit, and derive an
eicient structural description [43]. he two well-known approaches to facilitating
better behavioural descriptions are:

ż Extending and improving existing HDLs with features from modern pro-
gramming languages, such as the object-oriented features of SystemVerilog
(an extension, now successor, to Verilog).

ż High-level synthesis (HLS) [13, 43] (or behavioural synthesis) of high level
(programming) languages such as C or Java.

he purpose of high-level synthesis (HLS) is to transform a behavioural, oten se-
quential, description of a circuit to an RTL description. HLS is not restricted to
regular programming languages, it applies equally to the behavioural feature set of
existing (and extended) HDLs. he code in listing 1.2 gives an RTL description of a
inite impulse response (FIR) ilter in VHDL. It is a fully parallel implementation.
here is also one (purposefully included) performance issue: all multiplied values
are added in a long chain, instead of using a tree of adders, leading to a longer
combinational path than necessary.

he code in listing 1.1 gives a behavioural description of a FIR ilter inC.hepurpose
of a HLS tool is to convert this behavioural description to an RTL description. It
does not need to be a fully parallel implementation like the code in listing 1.2 though,
it is also possible to map the description to a sequential implementation, one which
contains only a single multiplier and a single adder. he process for determining
whether the implementation should be fully parallel, fully sequential, or something
in between, can either be done:

ż Manually: the HLS tool provides mechanisms to, e.g., unroll and pipeline
loops.

ż Automatically: the HLS searches for an implementation that best its the
given size and latency restrictions.

4

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

1 void ir_ilter (int16 *inp , int16 coefs [NUM_TAPS], int16 *outp) {
2 static int16 regs [NUM_TAPS];
3 int32 temp = 0 ;
4 int i ;
5

6 for (i = NUM_TAPS−1; i>=0; i−−) {
7 if (i == 0)
8 regs [i] = *inp ;
9 else

10 regs [i] = regs [i−1];
11 }
12

13 for (i = NUM_TAPS−1; i>=0; i−−) {
14 temp += coefs [i] * regs [i];
15 }
16

17 *outp = temp>>16;
18 }

Listing 1.1 ś FIR Filter: Behavioural C description

For example, HLS tools can take the associativity of addition into account when
summing the multiplied values and subsequently generate a tree of adder circuits
automatically.

he uptake of higher-level languages for circuit design and veriication in industry,
be it a regular programming language or an extended HDL, is high. Use of Sys-
temVerilog for veriication and testing is considered common practise, especially
in the ASIC design industry. Due to limited support from the synthesis tools, the
higher level features of these HDLs are not used for the actual implementation de-
scription of a circuit. Uptake of HLS tools, such as C-to-Gates tools, is, however,
much lower.

Early HLS tools, those introduced during the 1990’s, showed a low adaptation for
multiple reasons [41]: he quality of the generated hardware was much worse than
hand-crated designs, giving no incentive for RTL designers to switch. Also, these
HLS tools focussed on the synthesis of behavioural descriptions in HDLs, instead
of regular programming languages: the learning curve for these languages prohib-
ited the adoption by algorithm designers. he (late) 2000’s saw the (commercial)
introduction of HLS tools that use the programming language C as the input spec-
iication language. Such tools include Catapult-C [8] and AutoPilot [77]. his
signiicantly lowered the bar for algorithm designers and normal programmers to
use these tools.

5

1.
1
ś
H
a
r
d
w
a
r
e
D
es
c
r
ip
t
io
n
L
a
n
g
u
a
g
es

1 package types is
2 type array_of_signed_ 16 is array (natural range <>)
3 of signed (15 downto 0);
4 type array_of_signed_ 32 is array (natural range <>)
5 of signed (31 downto 0);
6 end;
7

8 entity ir is
9 generic (NUM_TAPS : natural);

10 port (clk : in std_logic ;
11 rstn : in std_logic ;
12 inp : in signed (15 downto 0);
13 coefs : in array_of_signed_ 16 (NUM_TAPS−1 downto 0);
14 outp : out signed (15 downto 0));
15 end;
16

17 architecture rtl of ir is
18 signal reg , reg_next : array_of_signed_ 16 (NUM_TAPS−1 downto 0);
19 signal temp : array_of_signed_ 32 (NUM_TAPS−1 downto 0);
20 begin
21 −− register
22 process (clk , rstn)
23 begin
24 if rstn = ’0 ’ then
25 reg <= (others ⇒ (to_signed (0 ,16))) ;
26 elsif rising_edge (clk) then
27 reg <= reg_next ;
28 end if ;
29 end process ;
30

31 −− combinational logic
32 reg_next <= inp & reg (NUM_TAPS−1 downto 1);
33

34 mul_add_coefs : for i in (NUM_TAPS−1) downto 0 generate
35 begin
36 mul_initial : if i = (NUM_TAPS−1) generate
37 temp(i) <= reg (i) * coefs (i) ;
38 end generate ;
39

40 mul_add_rest : if i /= (NUM_TAPS−1) generate
41 temp(i) <= temp(i+1) + (reg (i) * coefs (i)) ;
42 end generate ;
43 end generate ;
44

45 outp <= temp(0)(32 downto 16);
46 end;

Listing 1.2 ś FIR Filter: RTL VHDL description

6

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

Advances in compiler technology, and a focus on the digital signal processing (DSP)
parts (instead of the control parts) within circuit designs, has resulted in a much
higher quality of the hardware that is generated by contemporaryHLS tools [12, 41].
hat does not mean that arbitrary C programs can be converted to highly perform-
ing circuits: they almost always have to be altered so that the HLS tools can infer
more parallelism. Also, although HLS tools are very good at extracting instruction-
and loop-level parallelism from C programs, extracting task-level parallelism still
requires manual annotation [12].

he problems that HLS tools face stems from the sequential, imperative, nature of
the languages that are used for speciication, and the parallel, immutable, nature of
digital circuits. Even the most commonly used HDLs are based on languages that
were created for sequential CPUs: VHDL is based on Ada, and Verilog on C. It thus
makes sense to explore languages that are not created with a sequential platform in
mind, and are hopefully better aligned with the parallel nature of digital circuits.

1.2 Functional Hardware Description Languages

he third, lesser travelled and lesser known, road to raising the abstraction level of
circuit design is to use a programming paradigm that falls outside of the scope of
imperative languages. he most studied, non-imperative, paradigm in the context
of circuit design is functional programming. he tenets of functional programming
are simply function abstraction, the creation of functions, and function application.
Two other features oten associated with functional languages are purity and im-
mutability, where the two are actually closely related.

Purity is used to indicate that a function always returns the same result for an
associated input; that is, the result is not inluenced by side-efects, nor does a
function produce any side-efects. As mutation is a side-efect, variables in pure
functional languages are immutable. A variable in a functional language is thus
akin to a variable in mathematics: a constant, yet unknown, value.

he combinational logic in a digital circuit is a logic function, in the mathematical
sense, from its inputs to its output. he pure functions as those found in func-
tional languages embody this function concept of mathematics. Pure functions
are thus a perfect model for the combinational logic in digital circuits. he code in
listing 1.3, describing a half adder circuit, serves as a small example to demonstrate
the correspondence between functional descriptions and digital circuits.

Just like the mathematical function concept they embody, functions in functional
languages are timeless: there is no notion of time that inluences their behaviour.
Circuits on the other hand have propagation delays: it takes time for a level change
to propagate through a circuit. he retention behaviour of memory elements in
sequential logic crucially depends on these propagation delays. So, although list-
ing 1.4 is a good structural description of the combinational logic of an SR latch, the
semantics of the description does not say anything about the propagation delays
and hence the retention behaviour of the SR latch.

7

1.
2.
1
ś
Se
q
u
en

t
ia
l
lo

g
ic

Structural description

1 halfAdder a b = (s , c)
2 where

3 s = xor a b

4 c = and a b

Circuit

a

b
s

c

Listing 1.3 ś Half adder

Structural description

1 srLatch r s = (q ,nq)
2 where

3 q = nor r nq

4 nq = nor q s

Circuit

s

r
q

q

srLatch

Listing 1.4 ś SR Latch

Perhaps initially it seems that pure functions are thus a rather poor it to model
sequential logic. In the next subsection we will, however, show how sequential
logic can still be captured intuitively in a functional language.

1.2.1 Sequential logic

Sequential logic in digital circuits can be divided into synchronous and asynchronous
logic. In synchronous logic, all memory elements update their state in response
to a clock signal. In asynchronous logic, memory elements can update their state
at any time in response to a changing input signal. Although we can describe
asynchronous sequential circuits in a functional language [2], in this thesis we

8

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

Behavioural description

1 dliplop :: a −− Initial (or reset) value

2 → [a] −− Input signal

3 → [a] −− Output: input signal where all samples are delayed

4 −− by 1 cycle

5 dliplop i s = i : s −− place inital value in front of the incoming samples

Derived circuit

rst

clk

D Q

Clr

Listing 1.5 ś D lip-lop

restrict ourselves to synchronous sequential logic.

he clock signal in synchronous logic is an oscillating signal that is distributed to
all the memory elements such that they all observe its level change simultaneously.
A crucial aspect of synchronous logic is that the interval of the clock signal must
be long enough so that the input signals of the memory elements can reach a stable
value. he time it takes for a signal to become stable is determined by the largest
propagation delay between any two memory elements with no other memory ele-
ment in between. he (combinational) logic betweenmemory elementsmust hence
be completely acyclic. Synchronous design allows a designer to abstract from prop-
agation delays, and reason about state changes as if they happen instantaneously
and synchronised.

Now that we can abstract away from propagation delays in synchronous sequential
logic, it becomes more straightforward to model this sequential logic in a pure
functional language. Where combinational logic can be modelled by functions
that work on elementary values (booleans, integers, etc.), synchronous sequential
logic can be modelled by functions that work on streams of elementary values. he
elements in the stream correspond to the stable values for the consecutive clock
ticks.

Memory elements can now be modelled as functions that add elements to the head
a stream (see listing 1.5): given an stream of values s, adding a value i to the head
results in a new stream, s’, in which every value in s is delayed by one clock cycle.
Values calculated at time t are now available at time t+1. Directly working with
streams can be confusing, and can lead to anti-causal descriptions (by dropping
values from the stream); it is thus safer to only expose a set of primitives for stream
manipulation. his aspect will be elaborated further in chapter 3.

Until now we have only discussed how tomodel sequential logic in a functional lan-
guage. hat doesn’t mean, however, that all functional language based approaches

9

1.
2.
2
ś
H
ig
h
er

le
v
e
l
a
b
st
r
a
c
t
io
n
s

Haskell code

1 map f [] = []
2 map f (x : xs) = f x : map f xs

Structural view

xNx�x�

f

x� x�

f f f f

Listing 1.6 ś map: parallel composition of a unary function

to hardware design need explicit descriptions of sequential logic. In chapter 2 we
will see approaches where functions are a purely behavioural description, and the
synthesis tool will infer, or generate, sequential logic where appropriate.

1.2.2 Higher level abstractions

While the semantic match between functional languages and digital circuits is a
great technical feature, it does not directly ofer the higher-level abstractions needed
by hardware engineers to be productive. Where other high-level HDLs get their
new design abstractions from the object-oriented programming paradigm, such
as classes and interfaces in SystemVerilog, functional HDLs gain their high level of
abstraction from their straightforward manipulation of functions. hese so-called
higher-order functional languages have functions that can receive functions as their
arguments, or return functions as a result.

Higher-order functions allowmany forms of design abstraction. One example is, of
course, parametrising parts of the functionality of a circuit description. More gen-
erally, it is possible to capture certain design and recursion patterns as a function;
where the latter are called recursors. One such recursor is themap function, shown
in listing 1.6, which takes two arguments, a function f and a list xs, and applies
the f to all elements in xs. When we take a structural view of the map function
(bottom part of listing 1.6), we see that application ofmap to a concrete function f
translates to a parallel composition of the circuit f . Aside from parallel composi-
tion, higher-order functions can capture many more connection and composition
patterns commonly found in digital circuits. Further beneits of higher-order func-
tions and recursors will be discussed in greater detail in chapter 3.

Another abstraction found in functional languages is polymorphism, where a func-
tion is not tied to a ixed type for every argument, but can work on arguments of
any type. Combined with strong static typing and extensive and principled type
inference, designers can write functions that are:

10

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

ż Reusable and parametric: due to polymorphism.

ż Correct: due to strong, static, typing.

ż Concise: due to the absence of type annotations, as types are inferred.

1.2.3 Challenges in synthesising functional HDLs to circuits

We have seen that the semantics of pure functional languages match the semantics
of combinational logic when we have functions which process elementary objects,
and of sequential logic when we have functions which process streams. Given that
there is such a semantic match, synthesis from descriptions made in a functional
language to a low-level format, such as a netlist, should thus be straightforward.
While this is true for simple functions, synthesis of functions that use higher-level
abstraction mechanisms is more diicult. We highlight the synthesis diiculties
using themap function of listing 1.6 as an example:

ż he map function is polymorphic, so we cannot trivially determine how
many wires are needed to connect all the components.

ż hemap function is higher-order, its irst argument is a function. We cannot
encode functions as bits that low through wires.

ż he map function is recursive, which is problematic when you view func-
tion deinitions as structural descriptions of a component. Under such an
approach, recursive function applications will be synthesized to self-instanti-
ation of a component. his in turn leads to, unrealisable, ininite structures.

he exact synthesis of functional languages as proposed in this thesis, and further
elaboration of the challenges and their solutions, will be described in chapter 4.

Aside from the theoretical challenges of synthesising higher-order and recursive
descriptions, there is also the practical burden of implementing the actual simu-
lation and synthesis tools. Especially in the academic setting this has resulted in
incomplete toolsets. One popular approach to alleviate the implementation burden
is to create an embedded domain speciic language (DSL) for circuit design, which
is the approach taken by, for example, the Lava HDL [7]. An embedded DSL is,
as the name suggests, not a stand-alone language, but actually a library deined
within a general purpose language. An embedded language has the syntax of the
host language, where the data types and functions of the DSL library act as a new
set of keywords.

Synthesis for these embedded languages works in a non-standard way, where the
standard way would be performing a static analysis of the source code. he library
functions and data types in an embedded language are actually small, composable,
circuit generators. Simply executing the top-level function of the design within the
host language will generate the complete circuit. One technical diiculty is that
these circuit generators will, in the presence of feedback loops, generate ininite
trees, which have to be folded back into a graph structure [24]. One deicit of
the embedded language approach is that not all of the (desirable) features of the

11

1.
3
ś
R
es
ea

r
c
h
q
u
es
t
io
n
s

host-language can be used for circuit description. Most importantly, the choice-
constructs (such as case-statements) of the host language cannot be used to describe
choice-constructs in the eventual circuit; we will elaborate why in chapter 2. A
designer will have to use one of the choice-functions ofered by the embedded DSL
library; which are oten inferior in terms of expressibility compared to those ofered
by the host language.

1.3 Research questions

hemain goal of this thesis is to further improve the productivity of circuit designers.
As shown in the previous sections, there are multiple avenues we could explore in
order to achieve higher productivity. In this thesis we chose to further explore the
domain of functional hardware description languages, due to the semantic match
between functional languages and digital circuits, and the high-level abstraction
mechanisms available in functional languages. Being more productive is, however,
not just achieved by being able to abstract functionality, we also need:

ż To be able to express common idioms in circuit design straightforwardly.

ż Decrease the amount of time spent on the veriication of circuit designs.

ż Reason conidently about non-functional properties, such as chip area and
gate propagation delays.

his thesis therefore seeks answers to the following questions:

ż How can functional languages be used to express both combinational and
sequential circuits idiomatically?

ż How can we support correct-by-construction design methodologies using
a functional language?

ż How can we use the high-level abstractions without losing performance,
and have a straightforward cost model?

1.4 Approach and contributions of the thesis

In a previous section we described the use of embedding in order to create a new
HDL, but then also highlighted that the embedded approach has its own problems.
Instead of either embedding a HDL in a functional language, or creating a com-
pletely new language from scratch, this thesis explores the idea of using an existing
functional language directly for the purpose of circuit description.

his thesis makes the choice of using the functional languageHaskell for circuit de-
sign. We choose Haskell because of the many abstractions ofered by its expressive
type-system, polymorphism, higher-order functions, and pattern-matching con-
structs. Haskell’s extensive type-derivation and near lack of syntax and keywords
additionally leads to readable and concise circuit descriptions. Although there

12

C
h
a
pt
er

1
ś
In
t
r
o
d
u
c
t
io
n

are other functional languages which have very similar properties, we speciically
choose Haskell because:

ż It is a pure functional language, meaning that it has pure functions, which,
as mentioned earlier, map very well to combinational logic.

ż It has a non-strict semantics, meaning that arguments to a function are only
evaluated when their value is needed; the advantages of which are described
in chapter 3.

Also, instead of creating a complete toolset from scratch, we adapt an existing
Haskell compiler. We start with the existing Glasgow Haskell compiler (GHC) [64]
and its associated libraries and tools. We extend the set of libraries with a library
that has circuit-speciic data types and functions, such as: arbitrary-width integers,
registers, etc. Since our circuits are just Haskell programs, simulation is done in
GHC by either:

ż Applying a circuit description to its inputs within the GHC Haskell inter-
preter, or, if extra simulation speed is desired,

ż Compiling the circuit description, together with its inputs, into an (opti-
mized) executable, and execute the compiled program.

Aside from having designed a library for circuit design, we have also created a
synthesis tool that converts the Haskell descriptions to low-level, synthesisable,
VHDL. Also for this synthesis tool we can reuse large parts of GHC, which exposes
its internals as a library. Our eforts mainly focussed on the synthesis of GHCs
intermediate language, which is much smaller than Haskell. We used the GHC
library functions for parsing and type checking.

One advantage of embedded DSLs not explicitly discussed earlier is that the evalu-
ation mechanism of the host-language eliminates all high-level abstractions, such
as higher-order functions. his means that the embedded DSL implementer does
not have to deal with the synthesis of these abstractions. By choosing a standard
synthesis approach based on static analysis for this thesis, we do, however, have to
deal with the synthesis of these abstraction mechanisms explicitly.

Contributions

For the synthesis of these higher-level abstraction mechanisms, we chose an ap-
proach which is classic in the compilation of functional languages: compilation-by-
transformation. In compilation-by-transformation, source-to-source transforma-
tions are applied exhaustively until the description has such a shape that a mapping
to the target architecture is straightforward. Existing approaches are designed with
instruction-set machines in mind: directly mapping their output to digital circuits
would lead to highly ineicient circuits. We will elaborate on these ineiciencies
in chapter 4. his thesis explores a term rewrite system (TRS), a speciic form of

13

1.
5
ś
St
ru

c
t
u
r
e
o
f
t
h
e
t
h
es
is

compilation-by-transformation, that removes abstraction mechanisms from a de-
scription that have no direct mapping to a digital circuit, but without introducing
any ineiciencies.

his thesis is a continuation of the work done in [4] and [38], which resulted in
the original prototype for the synthesis tool and circuit library: łCAES language
for synchronous hardware (CλaSH)ž. We want to note that, from now on, we will
refer to the triple: Haskell, our library for circuit design, and our synthesis tool,
as the CλaSH language. his thesis improves upon [4] and [38] by providing a
better approach for the composition of sequential circuit speciications, which we
will discuss in chapter 3. Additionally, the rewrite system described in chapter 4
can correctly synthesise a larger class of speciications than the system described
in [38], and also comes with a correctness proof.

1.5 Structure of the thesis

he next chapter starts with an overview of a select number of hardware descrip-
tion languages, focussing mostly on industrially used languages such as VHDL and
Verilog, and on functional HDLs. he chapter will highlight the merits and disad-
vantages of the individual languages, the details of their synthesis (and problems
therein), and compare them to the CλaSH language.

he subsequent chapter, chapter 3, describes the CλaSH language in greater detail.
It highlights how the abstraction mechanisms in functional languages are highly
beneicial in the creation of high-level, parametric, circuit designs. One important
aspect discussed in length is how CλaSH deals with the concept of state. Addition-
ally, we make our case for basing CλaSH on a non-strict language, as opposed to a
strict language.

In chapter 4 we delve into the aspects of the synthesis from CλaSH to netlist-level
VHDL. We discuss both the general setup of the CλaSH compiler, and in greater
depth the term rewrite system (TRS) that removes abstractions such as higher-
order functionality. he chapter highlights the importance of types in synthesis,
and how they guide the synthesis process. Correctness of the transformations,
completeness of the system (that all abstractions with no counterpart in a digital
circuit are removed), and termination of theCλaSH compiler, are important aspects,
and are discussed in this chapter.

Usability and efectiveness of the CλaSH language and compiler are demonstrated
in chapter 5 using several mid-size circuit designs. hese designs cover both data
and control oriented aspects found in digital circuits.

Finally, this thesis concludes with chapter 6, where we discuss and summarise what
we have achieved by building theCλaSH language and compiler. Speciically, wewill
address the advantages and disadvantages of using a general-purpose functional
programming language Haskell as a starting point for a HDL. he chapter ends
with recommendations for further research.

14

15

2
Hardware Description

Languages

Abstract ś In order to increase productivity, hardware description langua-
ges must have the ability to abstract common idioms and patterns. Over the
years, conventional hardware description languages have acquired more meth-
ods for abstraction, but these new aspects are sometimes non-trivial to use or
are limited in scope as to what they are able to abstract. New languages have
more powerful abstraction mechanisms, but as a result, their synthesis to RTL
has become more complex, and is in certain situations limited. hese limita-
tions in synthesis also limits the expressivity of the designer. We compare the
abstraction capabilities of existing hardware description languages, and their
respective limitations, and elaborate where CλaSH either makes improvements
or makes a diferent trade-of.

2.1 Introduction

here are many description languages for hardware, both analogue and digital, and
their introduction and revision dates span several decades. In the context of this
thesis we will, however, focus on languages for synchronous, digital, circuit design;
or at least those languages of which their synthesis tools produce a synchronous
digital circuit. We narrow the overview of HDLs and their comparison with the
CλaSH language even further to those languages that are currently accepted in
industry (such as Verilog), and existing functional HDLs. he comparison with
the industrially accepted languages is there to warrant the research into new HDLs
in general, where the comparison with functional HDLs is there to demonstrate

Parts of this chapter have been published in [CB:7] and [CB:13].

16

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

that CλaSH captures a new and relevant point in the design space in the ield of
functional HDLs in particular.

For the languages such as VHDL and Verilog we describe the design abstraction
available, and which parts of these languages are synthesisable. As CλaSH distin-
guishes itself as a new point in the design space of functionalHDLs, we will describe
these functional languages in more detail. Also their synthesis is discussed in more
detail, as this aspect usually plays an important role (and not an aterthought as it
was for VHDL) in the features available in these languages.

2.2 Standard hardware description languages

With standard languageswemeanHDLs that are commonly used in industry, taught
in courses on digital design, and have support in tools frommultiple vendors. hese
languages are: VHDL, Verilog, and by extension SystemVerilog.

2.2.1 VHDL

VHDL has several abstractions available that allow for parametric and generative
circuit design: generics (c.f. listing 2.1) and conigurations on the parametric side,
and generate statements (c.f. listing 2.2) on the generative side. his section only
gives a short overview of these language features to demonstrate the means of
abstraction in VHDL. Completely elaborating these features falls outside the scope
of this thesis, and we refer the reader to works such as [3] for further details.

Parametrisation

In VHDL, design entities can be parametrised by certain constant values using
generics. As ofVHDL-2008 [34], the generics have been extended to: type, function,
and package generics. Type generics basically added a form of polymorphism to
the VHDL language, where function generics add higher-order functionality. An
example of a polymorphic, higher-order, entity is shown in listing 2.1. here are
several caveats to these new generics:

ż Support for VHDL-2008, especially for the new generics, is either non-
existent or fairly limited in synthesis tools¹.

ż Functions only support the sequential subset of VHDL, not the concurrent
one. here is hence no means to parametrise a component in concurrent
logic using generics, a designer must use conigurations for this.

ż Explicitly mapping every type generic is tedious and error-prone, especially
when compared to type-inference which is prevalent in functional langua-
ges.

1At the time of this writing, the only synthesis tool that we have found to fully support type and
function generics is: Synopsys Synplify(Pro/Premier), version I-2013.09-1

17

2.
2.
1
ś
V
H
D
L

1 entity incrementer is
2 generic (type data_type ;
3 function increment (x : data_type) return data_type) ;
4 port (inp : in data_type ;
5 outp : out data_type ;
6 inc : in std_logic) ;
7 end;
8 architecture rtl of incrementer is
9 begin

10 outp <= increment (inp) when inc = ’1 ’;
11 end;

Listing 2.1 ś Type and Function Generics

Aside from generics, there are also conigurations as a means for parametrisation.
Using conigurations, declared component interfaces can be instantiated to difer-
ent design architectures. his can be performed globally using a coniguration
declaration, or locally, using a coniguration speciication in the declarative part of
e.g. a block declaration. Where coniguration declarations can be used to conigure
any instantiated component in the design hierarchy, coniguration speciications
can only be used to conigure components in the same scope as the coniguration
speciication.

A disadvantage of conigurations and component declaration is that this conigura-
bility, unlike generics, is not visible at the interface of a design, its entity declaration.
You cannot pass a coniguration fromone component to the other; whereas generics
can be passed from one component to the other. his makes conigurations highly
non-modular, they are only useful in the context of a complete design hierarchy.

he verbosity of generics and conigurations (and perhapsVHDL in general) makes
these features under-used. Having two feature-incomplete, instead of just one
feature-complete, constructs for parametric design is also a disadvantage. For ex-
ample, it would be preferable to have component generics (and a deprecation of
coniguration speciications) in a future version of VHDL, so that parametrisation
is captured by a single concept: generics. Additionally, there is a disparity as to
where these parametrisation features can be used: where entities can have function
generics, functions themselves cannot have any kind of generics.

Higher-order functional HDLs, such as CλaSH, enable parametrisation by having
functions as both arguments and result. As functions are the only abstractionmech-
anism, there is no feature disparity either. Additionally, type-inference ensures that
we have polymorphism without explicitly propagating type annotations through
our design ś while still maintaining type safety.

18

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

Iterative generation: for ... generate

1 gen_label : for index in static_range generate

2 begin

3 ...
4 end generate ;

Conditional generation: if ... generate

1 gen_label : if boolean_expression generate

2 begin

3 ...
4 end generate ;

Listing 2.2 ś Iterative and Conditional generation in VHDL

Generate statements

VHDL has generate statements that facilitate the iterative and conditional compile-
time generation of other concurrent statements (ref. listing 2.2); where concurrent
statements include things like: signal assignment and component instantiation,
but also other generate statements. he range, for iterative generation, and the
boolean expression, for conditional generation, must be static: completely reducible
at compile- / elaboration-time. Enforcing a static range or expression is achieved by
restricting the construction of the range expression or boolean expression: variable,
port, and signal name references are not allowed.

he sequential parts of VHDL, functions, procedures, and processes, also contain
for-loops and if -statements. Synthesis tools oten elaborate these statements ex-
haustively, completely un-rolling for-loops and removing unchosen branches in
if -statements. As such, the for-loops and if -statements could be seen as the gener-
ative part of VHDL for sequential statements; where the earlier discussed generate
structures are there for the concurrent part of VHDL. Unlike the range expressions
and boolean expressions in generate statements, static reducibility in the for-loops
and if-statements is, of course, not enforced as part of the semantics of VHDL.

2.2.2 Verilog

his subsection, and the next on SystemVerilog, only give a short overview of the
abstraction mechanisms available in these languages. For a complete elaboration
of the details of these language features, we refer the reader to works such as [63].

Verilog [33] has abstractions for parametric and generative designs that are similar
in nature to VHDL. Where VHDL has generics, Verilog has parameters. Like VHDL
prior to the 2008 incarnation, parameters can only parametrise constants in the de-
sign, not functionality or types. However, unlike VHDL, Verilog allows parameters
in all design entities: modules, functions, and tasks. Although it should be noted that

19

2.
2.
3
ś
Sy
st
em

V
er
il
o
g

tasks and functions in Verilog can only exist within amodule, and are not top-level
design entities; functions in VHDL are top-level design entities. Verilog also has
conigurations; however, where VHDL allows coniguration speciications within an
architecture, Verilog only supports conigurations as a top-level construct.

Generative constructs, in the form of generate blocks, support both conditional
and iterative generation. Aside from boolean conditions, Verilog also supports
case-statements as conditional generation blocks.

Being related to the C programming language, Verilog also has compile-timema-
cros through a pre-processor. Using ‘define and ‘ifdef...‘else...‘endif,
code can be conditionally synthesised; and could hence be classiied as a (condi-
tional) generative construct of Verilog. An advantage ofmacros over generate blocks
is thatmacros can be used outside of a module deinition, e.g. to conditionally gen-
erate a module interface. An advantage of generate blocks is that they enable two
diferent instances of the same module to be conigured individually.

2.2.3 SystemVerilog

SystemVerilog is a proper extension to Verilog, and since 2009 the two languages
are merged into the IEEE standard 1800-2009; there is now only SystemVerilog.
SystemVerilog extends Verilog parameters with type parameters, hence supporting
polymorphic designs. Support for these type parameters is present in both FPGA
and ASIC tooling. Unlike VHDL-2008, there are no function or task parameters.
his does not mean that functionality cannot be abstracted: SystemVerilog intro-
duces a new design element called an interface.

An interface can bundle, aside from ports and wires, functionality in the form of
functions, tasks, and procedural blocks. Unlikemodules, interfaces can be made into
ports; for both modules and interfaces themselves. hese interface ports can also
be generic, meaning that the choice for a concrete interface is deferred to when a
module (or higher-level interface) is instantiated. Listing 2.3 showcases all of the
above points. he interface map_i has a generic interface port, f. Nota bene, the
interface f should have a task or function called run, which is called on line 6. he
map_i interface is hence parametrised over the run task, or function, ofered by
the interface f. Finally, on line 17, a concrete instance of the addOne_i interface is
created, which is subsequently passed to a concrete instance of themap_i interface
on line 22.

Although the presented SystemVerilog code is certainly not idiomatic, ASIC synthe-
sis tools are able to generate a netlist for Listing 2.3. he presented technique does
not facilitate the abstraction over all the types of behaviour in SystemVerilog. Tasks
and functions only allow a subset of SystemVerilog within their bodies: for example,
tasks cannot have procedural blocks such as always_comb. Further investigation is
the higher-order possibilities of SystemVerilog are hence warranted.

20

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

1 interface map_i #(parameter N=32, parameter type ELEMTYPE=logic)
2 (interface f) ;
3 task automatic run (input ELEMTYPE arg [N−1:0]
4 , output ELEMTYPE res [N−1:0]);
5 for (int mapIter=0; mapIter < N; mapIter+=1)
6 f . run(arg[mapIter], res [mapIter]) ;
7 endtask
8 endinterface
9

10 interface addOne_i;
11 task automatic run (input integer a , output integer b) ;
12 b = a + 1 ;
13 endtask
14 endinterface
15

16 module top (input integer in [7 :0], output integer out [7 :0]) ;
17 addOne_i addOne(); // create instance of ’ addOne_i’ interface
18 // create intance of ’map_i’ interface where:
19 // * parameter N is set to the size of ’ in ’
20 // * parameter ELEMTYPE is set to ’ integer ’
21 // * the inferface port is instantiated with ’addOne’
22 map_i #(.N($size (in)) , .ELEMTYPE(integer))map(addOne);
23 always_comb
24 map.run(in ,out) ;
25 endmodule

Listing 2.3 ś Higher-Order SystemVerilog

2.2.4 BlueSpec SystemVerilog

BlueSpec SystemVerilog (BSV) [49] is a hardware description language with a syn-
tax similar to SystemVerilog [35]. It is a high-level language that features guarded
atomic transactions tomodel complex concurrent circuits. A transaction only starts
when the assertion of its corresponding guard holds. he atomicity aspect says that
individual transactions can be reasoned about as if they exist in isolation, even
though multiple transactions are actually run concurrently. here are both implicit
and explicit guards, the explicit guards are the ones added by a designer, where the
implicit guards are added by the compiler, for aspects such as access to a memory.

BSV has both polymorphic typing and higher-order functions. Unlike for example
type generics inVHDL-2008, BSV does not require explicit type assignments, these
assignments are inferred. As opposed to Haskell, almost all declarations², whether

2Method deinitions implementing a speciied interface do not need any type annotations.

21

2.
3
ś
Fu

n
c
t
io
n
a
l
L
a
n
g
u
a
g
es

1 fun mult(x , y , acc) =
2 if (x=0 | y=0) then acc
3 else mult(x<<1, y>>1, if y . bit 0 then acc+x else acc)

Listing 2.4 ś Shit-Add Multiplier in SAFL [47]

they are variables, functions, or any other construct, do have to be annotated with
a type; in Haskell even declarations can have their type inferred. Whether this is a
restriction incurred by either the syntax or the underlying type-inference algorithm
is unclear.

Synthesis

he synthesis from a BSV description to RTL-level Verilog is performed in two
stages, which corresponds to the static and dynamic semantics of the language:

ż A description is partially evaluated according to the static semantics, this
includes the elimination / propagation of higher-order functions.

ż he resulting description ater partial evaluation is actually a set of rewrite
rules. he second synthesis transformation instantiates all these rules in
parallel, and adds scheduling logic in case there are conlicting precondi-
tions [31].

2.3 Functional Languages

his section describes the features of existing functional hardware description lan-
guages. It provides a more detailed account of the synthesis of these languages, as it
inluences their expressivity in certain cases, and because synthesis is an important
aspect of this thesis.

2.3.1 Conventional Languages

SAFL

SAFL [47] presents itself as a Statically Allocated Parallel Functional Language. Al-
though the name alludes to SAFL being a general purpose functional language,
the only existing compiler [59] produces solely RTL-level Verilog. he Statically
Allocated aspect of SAFL refers to its unique feature that the size of the text of the
program fully determines the size of the circuit. his very aspect is achieved by
instantiating SAFL functions as a circuit at most once. Multiple function calls, in-
cluding recursive calls, hence do not lead to multiple instantiations of the same
component, a single instance will be accessed through multiplexers and arbiters.
Primitive functions and operators are, however, duplicated.

22

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

Calls to f are serialised

1 fun f x = ...
2 fun main(x,y) = g(f (x) , f (y))

Duplication of f leads to parallel execution

1 fun f x = ...
2 fun f ’ x = ...
3 fun main(x,y) = g(f (x) , f ’(y))

Listing 2.5 ś Serialised calls vs. Parallel execution through duplication [47]

he SAFL example in listing 2.4, copied from [47], shows the deinition of a shit-
add multiplier; it highlights the efect of being statically allocatable. he recursive
call ofmult will not introduce a static expansion of the logic ofmult, but will instead
lead to a (delayed) feedback loop (including the necessary control and arbitration
logic).

Static allocation causes function calls to be serialised, even when they are indepen-
dent. To increase the level of parallelism, a function can be duplicated, and the
independent calls can refer to a unique duplicate. An example of this is shown
in listing 2.5. he consequence of this duplication is of course an increase in size
(by the size of f). Similar transformations can be (mechanically) applied to the
shit-add multiplier of listing 2.4 to double the amount of work per clock cycle, at
the cost of increasing the size of the circuit (although the size of the arbitration
logic would stay the same).

he SAFL language has several restrictions, some ofwhich are due to being statically
allocatable. SAFL uses recursion to model feedback, but this recursion is limited to
tail-recursion only. Having only tail-recursion means that no additional memory
facilities are needed to store intermediate results. Higher-order functions are also
not supported for similar reasons, higher-order functions introduce the risk of
needing an ininite store. It is possible to restrict the use of higher-order functions
whichwould not introduce these storage implication, but they are not implemented;
see [47] for more details. SAFL is also restricted in the available data types, it
only has integer-values (of a speciiable bit-width) and labelled product types (also
known as records).

Verity

Verity [22] is a functional hardware description language which, like SAFL, de-
scribes circuits behaviourally. It features (synthesis) support for higher-order func-
tions, recursion (using a ixed-point combinator called ix), andmutable references.
he synthesis scheme behind Verity is described in a series of papers called Ge-
ometry of Synthesis (GOS) [19ś21, 23]. Verity has an underlying aine type system;

23

2.
3.
1
ś
C
o
n
v
e
n
t
io
n
a
l
L
a
n
g
u
a
g
e
s

Fixed-point combinator

A ixed-point combinator is a higher-order function ix that satisies the equa-
tion:

ix f = f (ix f)

It is so named because, by setting x = ix f , it represents the solution to the
ixed point equation:

x = f x

As a simple demonstration, we irst present the recursive deinition of the
factorial function:

fact n = if n == 0 then 1 else n * fact (n − 1)

and then using a ixed-point combinator:

fact = ix fact ’
fact ’ f n = if n == 0 then 1 else n * f (n − 1)

Nested - Allowed

λf g x . f (g x)

Nested - Disallowed

λf x . f (f x)

Parallel - Allowed

λf g x y . f x || g y

Parallel - Disallowed

λf x . f x || f x

Sequential - Allowed

λf x . f x ; f x

Listing 2.6 ś Aine typing - allowed identiier use

in an aine type systems values may not be duplicated. In Verity this means that
identiiers can be used at most once in a parallel and nested context, where such
restrictions do not apply to a sequential context. See listing 2.6 for examples that
highlight these restrictions. As a result, just like for SAFL, the size of the circuit can
be determined by the size of the program text.

he aine typing also facilitates separate compilation: synthesis does not require
whole-program transformation. Because aine typing ensures that variables are
used at most once, including those with a function value, free variables and higher-
order function arguments simply give rise to extra input and output ports for the
generated component. hat is, the program:

import <print>
λf x. print (f x)

24

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

lib1.ia

import <print>
let f = λx. print x
in export f

lib2.ia

import <print>
let g = λx. print x
in export g

main.ia

import "lib1"
import "lib2"

#Will error with:
lib1.ia: ‘print‘ already used in ‘lib2.ia‘
f 4; g 7

Listing 2.7 ś Invalid linking

Gives rise to a component with the obvious input port for x, and an output port for
the result (in this case just a control signal, a ready lag), but also:

ż An output port corresponding to the input of f, and an input port corre-
sponding to the output of f.

ż An output port corresponding to the input of print, and an input port cor-
responding to the output of print.

During link time all the components are properly connected. he linking process
does, however, not resolve any potential conlicts, such as the conlict shown in
listing 2.7. In this case the functions f and g both use the print function, and the
linker cannot connect the single print component to the f and g components; even
thoughmain uses f and g in a sequential fashion.

Although the aine typing rules seem overly cumbersome, especially the nested ap-
plication restriction (λf x. f (f x)), the developer-facing type system is actually more
lenient. he Verity compiler uses a process called serialisation [21] that transforms,

ż he non-aine expression:

let f = λg x . g (g x) in f (λy. y + 1) 0

ż To the aine expression:

let f = λg h x . g (h x) in f (λy. y + 1) (λy. y + 1) 0

At themoment, recursion inVerity is only possible using theixed-point combinator,
ix. Recursion using ix is always unfolded in time. So, the circuit derived from the
description given in listing 2.8, contains all the logic needed for one instantiation of
the body of ix. Just like in SAFL, control logic is added so that the circuit exhibits
the behaviour of the recursive description.

25

2.
3.
1
ś
C
o
n
v
e
n
t
io
n
a
l
L
a
n
g
u
a
g
e
s

Bound variables, free variables, and closed expressions.

A free variable denotes a place in an expression where substitution may take
place. A bound variable is a variable that was previously free, but has been
bound to a speciic value. In programming language terms, a free variable
is a variable reference that refers to neither a local variable, nor a function
argument. So in the expression:

1 λx. y x

the x in the application (y x) is a bound variable because it refers to the ar-
gument x, and y is free. A closed expression is an expression with no free
variables.

1 let ib = ix λf . λx.
2 if x < 1$32
3 then 0$32 # Integer value ’0 ’ represented by 32 bits
4 else if x < 2

5 then 1

6 else f (x−1) + f (x−2)

Listing 2.8 ś Fibbonaci function in Verity

Unfolding in space, although described in [23], is not implemented in the current
incarnation of the Verity compiler. Transforming an unfolding in time to an unfold-
ing in space would thus have to be performed manually. he restrictions that apply
to the ixmake this less than ideal:

ż he expression f in, ix f, must be closed (f maynot refer to variables outside
of ix).

ż Parallel composition is not allowed within ix.

he latter restriction means that the unfolding in timemust be completely converted
to unfolding in space, as a half-way point would have parallel composition within
ix, which is not allowed.

he data types supported by Verity are: integer (with a speciiable bit-width), tuples,
and arrays. Because Verity is higher-order, any algebraic data type (sum-types and
product-types) could be encoded using a Church-encoding [5]. When using these
encoded data types within ix, they must either be abstracted over, or be redeined,
because ix only accepts closed expressions.

26

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

1 data Signal a = Signal (Stream a) (D a)
2 data Stream a = a :~ Stream a
3

4 newtype D a = D AST
5 data AST = Var String
6 | Entity String [AST]
7 | Lit Integer

Listing 2.9 ś Simpliied dual embedding [27]

and2 :: Signal Bool → Signal Bool → Signal Bool
or2 :: Signal Bool → Signal Bool → Signal Bool
pureS :: Rep a ⇒ a → Signal a
(.==.) :: (Rep a ,Eq a) ⇒ Signal a → Signal a → Signal Bool
mux :: Rep a ⇒ Signal Bool → (Signal a , Signal a) → Signal a

Listing 2.10 ś Excerpt of Lava Functions and Combinators (Simpliied) [25]

2.3.2 Embedded Languages

An embedded domain speciic language (DSL) is, as the name suggests, not a stand-
alone language, but actually a library deined within a general purpose language.
An embedded language has the syntax of the host language, where the data types
and functions of the DSL library act as a new set of keywords.

Lava

Lava [7, 26] is a DSL for structural hardware description embedded in Haskell. All
values that eventually end up in the circuit are of an abstract Signal type; where
abstract means that the data-constructors for this data type are not available to the
circuit designer. his Signal type can be thought of as a stream of temporally spaced
values, where each individual element corresponds to a single clock cycle. InKansas
Lava [27] such a Signal type is internally even represented by both a Stream data
type, and tree data type representing the structure of the circuit (ref. listing 2.9) ś a
subject we will return to shortly. Because these Signal types are abstract, a designer
cannot manipulate these values directly, instead, (an extensive set of) combinators
and functions ofered by the Lava library must be used. he signatures for such
functions are shown in listing 2.10.

Synthesis of Lava does not follow the traditional path of static analysis, instead,
the Lava library functions are so-called smart constructors for a tree data type.
Executing a function that translates such a data type to e.g. VHDL will then simply
calculate the entire structure. Polymorphism, (inite) recursion, and higher-order

27

2.
3.
2
ś
E
m
b
ed

d
ed

L
a
n
g
u
a
g
es

functions are simply handled by the execution mechanisms of Haskell, and are
hence not the problem of the Lava implementers.

he observant reader will notice that we said that the Lava functions create a tree
data-structure, and not, as one might expect for a structural HDL, a graph data-
structure. When descriptions have feedback loops, the Lava/Haskell description,
will indeed describe an ininite tree ś the synthesis functionmust hence irst convert
this ininite tree to a graph before VHDL can be generated. Techniques such as
observable sharing [24] must be used to tag the nodes in the ininite tree so that
cycles can be detected.

Haskell has a rich set of choice-constructs, including features such as guards and pat-
tern matching. In the style of embedding chosen by Lava, these choice-constructs
can, however, not be used to model choice-structures in the circuit. his is a di-
rect consequence of using Haskell’s evaluation mechanism to construct the circuit
graph: choice-constructs can be used to guide the construction of the circuit graph,
but it is not possible to observe all the alternatives. he problem is that functions
must operate on values of type Signal a in order to build the data-structure that
will represent the circuit. he Signal type is, however, not transparent in terms of
pattern-matching. hat is, given a value s, of type Signal Bool, the expression case
s of {True → ... ; False → ...} , is invalid. hat is, even though True and
False are indeed the constructors of Bool, they are not the constructors of Signal
Bool.

he earlier versions of Lava [7] did not support custom data-structures; there was
only support for Bit-lists and integers. hemost recent incarnation, Kansas Lava [26,
27], does support custom data types. A data type must have an instance for the Rep
type class if it is to be used as value-type for a Signal. here are meta-programming
facilities, using Template Haskell [28, 60], that automate the instance generation if
the custom data type has either of the following properties:

ż It has an instance for the Integral type class, that is, it can be represented as
an integral value.

ż It has an instance for the BitRep type class, which speciies how a data type
can be converted to and from a list of Bits.

here are, however, no meta-programming facilities that automate the instance
generation for the above two type classes.

One might argue that custom data types are of little use, as the elimination form for
data types, pattern-matching, is one of the Haskell choice-constructs which cannot
be synthesised within the embedded approach. Using so-called choice combinators,
we can, however, partially emulate pattern-matching. Listing 2.11 shows a set of
these smart constructors to emulate Haskell’s case-expressions. Comparing an
actual case-expression with the cASE choice combinator in listing 2.12, we can
observe that the emulation closely matches real case-expressions.

Pattern matching in Haskell facilitates two distinct concepts:

28

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

1 cASE :: (Rep a , Eq a) ⇒ Signal a → [(Maybe a, Signal b)] → Signal b
2 cASE _ [] = error "empty case "
3 cASE _ [(_ ,e)] = e
4 cASE _ ((Nothing , e) :_) = e
5 cASE r ((Just a ,e) : ps) = mux (r .==. pureS a) ((cASE r ps) , e)
6

7 (=⇒) :: (Eq a , Rep a) ⇒ a → Signal b → (Maybe a, Signal b)
8 a =⇒ s = (Just a , s)
9

10 oTHERWISE :: (Eq a, Rep a) ⇒ Signal b → (Maybe a, Signal b)
11 oTHERWISE s = (Nothing, s)

Listing 2.11 ś Choice Combinators (Adaptation of [78])

case-Expression

1 case opc of

2 Add→ x + y
3 Mul→ x * y
4 _ → 0

cASE choice combinator (ref. listing 2.11)

1 cASE opc
2 [Add =⇒ x + y
3 , Mul =⇒ x * y
4 , oTHERWISE 0

5]

Listing 2.12 ś case-Expression vs. Choice Combinator (ref. listing 2.11)

ż Scrutinising a value according to the shape of its constructor, and selecting
the appropriate alternative.

ż Binding the values of the ields of a data type constructor to variables, called
projection.

he choice combinator shown in listing 2.11 and listing 2.12 only emulates the irst
feature, scrutinising the shape of a constructor and selecting the appropriate al-
ternative. Another DSL embedded in Haskell, HHDL [76], advocates the use of
irst class patterns in the style of [55] to emulate both features of pattern matching:
selection and projection. Where ordinary pattern matching binds values in the
pattern itself, the irst class patterns approach employs lambda terms to bind values.
he general shape of an alternative (pattern + expression) in the irst class patterns
approach is:

29

2.
3.
2
ś
E
m
b
ed

d
ed

L
a
n
g
u
a
g
es

case-Expression

1 case mbA of

2 Just x → x
3 Nothing → 0

First Class Patterns (ref. HHDL [76])

1 match mbA
2 [pJust pvar −−> λ(x :. Nil) → x
3 , pNothing −−> λNil → enabledS 0

4]

Listing 2.13 ś case-Expression vs. First class patterns (ref. HHDL [76] and [55])

pCon pat1 .. patn −−> λ(x1 :. .. :. xm :. Nil) → altExpr

Where −−> is a function that combines the pattern on the let-hand side and the
expression on the right-hand side. he pCon pattern function emulates the pattern
/ constructor of the original data type, e.g., pJust emulates the Just pattern / con-
structor of the Maybe data type. he pCon pattern function takes n patterns as
arguments, matching the arity of the pattern / constructor of the original data type.
hese patterns are of the form:

ż pCon pat1 .. patn : Another constructor pattern.

ż pvar: Variable pattern, indicating that the value should be bound to a name.

ż pconst c: Constant pattern, match again c.

ż pwild: Wildcard pattern.

Using pvar, the pattern function(s) build a heterogeneous list of values, which are
bound to names in the lambda term that is on the right-hand side of the −−>
combinator. he order of the bound values matches the syntactic order of the pvar
functions in the pattern, and nested patterns result in nested heterogeneous lists.

Comparing ordinary pattern matching with irst class patterns in listing 2.13, we
conclude that the expressiveness of both forms is equal. he implementation for the
functions presented in listing 2.13 can be found in appendix A. here are, however,
at least two caveats to the irst class patterns approach:

ż hey are (far) more verbose than ordinary patterns.

ż here is a syntactic (and hence cognitive) distance between the name bind-
ing the value (the lambda-term) and the bound value itself (the pvar expres-
sion).

One additional aspect that should be taken into a account is that the bound val-
ues are tagged to indicate that they are enabled. Bound values are of type Signal

30

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

1 mATCH mbA
2 [pJust pVar −−> λ(x :. Nil) →
3 let k = registerEnabled 0 (x + (enabledS k))
4 in k
5 , pNothing −−> λNil → 0

6]

Listing 2.14 ś First Class Patterns and Enabled Values

(Enabled a), and not simply of type Signal a. his is important because all the al-
ternatives will be executing in parallel in the eventual circuit, where some of the
alternatives might contain memory. he circuit in listing 2.14 contains such an
alternative: it accumulates the values that are inside the Just constructors; it uses
the registerEnabled function, which only stores a new value when the enable tag of
its input is asserted. If the bound value would not have this enable tag, the register
would accumulate bogus values during cycles whenmbA is Nothing, an obviously
unwanted behaviour.

It should be noted that this approach, or perhaps limitation, of using explicit enable
values is only neededwhen irst-class patterns are completely implemented as smart
constructors. When themATCH function would be a primitive of the language, it is
most likely possible to add the enable signals automatically in the netlist generation
procedure.

ForSyDe

heForSyDe [58] system usesHaskell to specify abstract systemmodels. A designer
can model systems using heterogeneous models of computation, which include:
continuous time, synchronous, and untimed models of computation. Using so-
called domain interfaces a designer can simulate electronic systems which have
both analogue and digital parts. ForSyDe has several backends, including simu-
lation and automated synthesis, although automated synthesis is restricted to the
synchronous model of computation.

ForSyDe splits design entities into three hierarchical levels; from bottom to top
they are (ref. listing 2.15):

Function: Deines, partially, the internal behaviour of a process.

Process: he main design unit in ForSyDe. Processes consist of values and func-
tions which determine its state and behaviour. Processes can only be created
using well-deined process constructors. An example of such a process con-
structor ismealySY, which takes two functions, one that calculates the next
state and one that calculates the current output, and the value for the initial
state. his process then behaves like a standardMealymachine [44].

31

2.
3.
2
ś
E
m
b
ed

d
ed

L
a
n
g
u
a
g
es

1 −− A function which adds one to its input
2 addOnef :: ProcFun (Int32 → Int32)
3 addOnef = $(newProcFun [d|addOnef :: Int32 → Int32
4 addOnef n = n + 1 |])
5

6 −− Process which uses addOnef
7 plus1Proc :: Signal Int32 → Signal Int32
8 plus1Proc = mapSY "plus1Proc" addOnef
9

10 −− System deinition associated with the process
11 plus1SysDef :: SysDef (Signal Int32 → Signal Int32)
12 plus1SysDef = newSysDef plus1Proc " plus1" [" inSignal "] [" outSignal "]

Listing 2.15 ś Hierarchical System Deinition [1]

Aside from process constructors, processes can also be deined by:

ż he composition of other processes.

ż he instantiation of a system.

System: A simple wrapper around a process, deining its name, the names of its
inputs, and the name of its output.

ForSyDe uses Template Haskell [28, 60], a meta-programming facility for Haskell,
to convert the lowest level in the hierarchy, functions, to netlists. Template Haskell
provides compile-time observation of theASTof aHaskell declaration, and compile-
time generation and insertion of newAST nodes. Looking at lines 3ś4 of listing 2.15,
the [d| ... |] constructs provides the compile-time observation of the enclosed ex-
pression. he newProcFun then converts the AST of the function to an AST of a
declaration representing a netlist node; the $(...) construct subsequently inserts
this generatedAST in the completeASTof theHaskell / ForSyDe program. ForSyDe
uses observable sharing techniques, as those discussed in the section on Lava, to
convert (compositions of) processes to a complete netlist.

Using TemplateHaskell, ForSyDe could observe anyHaskell function and convert it
to a netlist. However, this part of the synthesis lowmust now rely on standard static
analysis techniques, and can no longer beneit fromHaskell’s evaluationmechanism
to simply calculate the netlist graph ś which is what happens in Lava. he result
is that only a limited subset of Haskell can, currently, be converted to a netlist, the
ForSyDe compiler has the following restrictions:

ż No structured expressions on the RHS of a function (nowhere-clauses, and
no let -bindings)

ż Only a very limited set of functions may be used.

ż No higher-order functions.

32

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

ż No pattern-matching in a function deinition

ż Patterns in case-statements are limited to literals, variables, and wildcards;
constructor-patterns are not supported.

ż No type-class methods.

ż No support for guards.

ForSyDe does support synthesis of custom data types, but without pattern-match-
ing on constructors, their usefulness is reduced.

2.4 Conclusions

2.4.1 Standard Languages

he standard hardware description languages all allow type and function parame-
trisation in some shape or form. A recurring theme in all of these languages is that
the type parameters have to be speciically annotated. In Haskell, and by extension
CλaSH, types are automatically inferred. his type inference relieves the designer
from the cognitive burden of:

ż Determining the types of all values, whether they be for input or output
ports, or wires.

ż Determining which types must be parametrised to get the most general
hardware design.

here is an additional syntactic burden in the standard languages of having to
explicitly instantiate all the parameters. In CλaSH, this instantiation happens auto-
matically, thereby improving the readability of hardware designs.

Also, although functionality can be parametrised in the standard languages, func-
tions are not irst-class. As a result, parametrising functionality is not really encour-
aged by the language:

ż here is no single, straightforward, parametrisation mechanism. In VHDL,
depending on the type of logic you want to parametrise, you should either
use conigurations, or function generics. heir distinct disadvantages have
been described in an earlier section.

ż In SystemVerilog, modules and interfaces can only be parametrised in terms
of interfaces, not modules. Even though modules are considered the default
design entities, exempliied by the fact that the top-level design entity must
be a module.

In CλaSH, where functions are irst-class, and also the only design entities, these
restrictions do not apply. Designers also do not have to learn and use a new syn-
tax to parametrise functionality: function arguments, on both the abstraction and
application side, are indistinguishable from other arguments. his irst-class ap-
proach lowers the barrier to parametrise functionality, and thereby encourages the
creation of generic, reusable, hardware descriptions.

33

2.
4.
2
ś
Fu

n
c
t
io
n
a
l
L
a
n
g
u
a
g
es

2.4.2 Functional Languages

Conventional

SAFL is a irst-order functional language, meaning that it does not have irst-class
functions; actually, it has nomeanswhatsoever to parametrise functionality. CλaSH,
being a higher-order functional language, thus has a clear advantage over SAFL in
this aspect. In SAFL, both concurrent and recursive function calls are performed se-
quentially through automatically inferred arbitration logic. his feature enables the
straightforward creation of space-eicient circuits. Higher degrees of parallelism,
and thus time-eiciency, are achieved through duplication: creation of a copy of
a function in the case of concurrent access, and manual unrolling in the case of
recursive calls. In CλaSH, concurrent calls lead to automatic duplication of the
called function, and recursive functions are exhaustively unrolled; where the latter
has the potential for non-termination. CλaSH thus enables a time-eicient circuit
by default. Making a circuit sequential has to be done manually in CλaSH, includ-
ing the creation of (potentially complex) arbitration logic. For regular structures,
such as those found in algorithms for DSP applications, the parallel-by-default ap-
proach of CλaSH is most likely preferable. For irregular circuits, such as CPUs, the
sequential-by-default approach of SAFL might be preferable.

he irst-order limitation imposed by the static allocability aspect in SAFL is over-
come through the use of an aine type system in Verity. Restricting identiier use
in parallel and nested settings to exactly once, space usage is still fully determined
by the size of the text of the program. Where the aine restriction is strictly imposed
on free variables, bound variables are implicitly duplicated through a process called
serialisation. Where SAFL thus only supports explicit duplication of functions to
achieve higher levels of parallelism, Verity supports implicit duplication through
the use of higher-order functions. However, only local, let-bound, functions can be
duplicated; external functions, being free variables, cannot be passed to a higher-
order function that intends to duplicate the functionality. he exact efects of these
limitations on designer productivity require further study. Being similar to SAFL,
the advantages that SAFL has over CλaSH also are also advantages that Verity has
over CλaSH. Unlike SAFL, Verity and CλaSH are on par in terms of parametrising
functionality as both have irst-class functions. A disadvantage of Verity, compared
to both SAFL and CλaSH, is that there can be no partial, space versus time, trade-
of in a circuit description: a function must be either be completely elaborated over
time, or completely elaborated in space, there is no half-way point. he reason for
this is that the parallel composition is not allowed within the ixpoint combinator.

In terms of data types, CλaSH is superior to both SAFL and Verity. CλaSH supports
many user-deined data types, including sum, product, and inductive data types;
SAFL and Verity are limited to primitive types (integer, boolean, etc.) and product
types (records and arrays). Additionally, CλaSH is the only language of the three
that has polymorphism.

34

C
h
a
pt
er

2
ś
H
a
r
d
w
a
r
e
D
esc

r
ipt

io
n
L
a
n
g
u
a
g
es

Embedded

CλaSH has a distinct advantage over both Lava and ForSyDe in terms of user-
deined data types, being the only language that supports the full range of choice
constructs; especially patternmatching. In Lava, patternmatching can be emulated
through smart constructors and irst-class patterns, but there are many aspects that
make them more cumbersome than traditional pattern matching.

Section 2.3.2 lists a number of features of the Haskell language that cannot be syn-
thesised by the ForSyDe embedded compiler; all these features can be synthesised
with the CλaSH compiler. Something that can be achieved with ForSyDe through
explicit systemwrapping and system instantiation, but not with Lava, is the creation
of a hierarchical netlist. hat is, the synthesis process in Lava generates one big
VHDL ile that contains a single entity. CλaSH creates hierarchical netlists by de-
fault: it creates multiple VHDL iles, each containing a design entity corresponding
to a (irst-order) function. Hierarchical netlists facilitate post-synthesis analysis of
non-functional properties, such as chip area and propagation delay, at the individ-
ual function level. Something that is far less complex than analysing the complete
system.

35

37

3
CAES Language for

Synchronous Hardware

Abstract ś he CλaSH compiler sees Haskell programs as digital circuit
descriptions, in particular, it sees them as structural circuit descriptions. By
taking a structural view, the implicit parallelism in the descriptions is synthe-
sised to (sub-)circuits actually running in parallel. In such a structural view,
choice constructs (e.g. case-expressions) are mapped to multiplexers, and all
the alternatives of the choice construct will be operating (speculatively) in par-
allel; only one of the outputs of the alternatives will, however, be routed to the
output of multiplexer at any one time. his approach only works for languages
that have pure functions, such as Haskell, because only then is the observable
behaviour of the circuit the same as the observable behaviour of the function
from which it is synthesised. Only a semantic subset of Haskell programs have
a circuit equivalent under a structural view: unbounded recursion would cor-
respond to a circuit with ininite structure, which is not realisable. he subset
of Haskell that can be synthesised to an equivalently behaving circuit under
the structural view is called CλaSH, the language.

3.1 Introduction

In chapter 1 we already gave a short introduction to the correspondence between
pure functional languages and digital circuits. In this chapter we will rehash some
of that information, but also completely elaborate why the semantics of Haskell
speciically makes it a good choice for the speciication of digital circuits. Unlike
the example code listings in chapter 1 and chapter 2, wewill also elaborate the syntax
(and semantics) of the code in (more) detail.

Large parts of this chapter have been published in [CB:7] and [CB:9].

38

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

he chapter starts with the speciication of combinational logic in Haskell, followed
by simulation of these circuits, in essence highlighting the semantic match of the
descriptions and actual combinational circuit logic. he section ater that will
discuss the higher-level features of Haskell, such as polymorphism and higher-
order functions, and show their particular usefulness for circuit descriptions. he
chapter ends with the descriptions of sequential logic.

hroughout this thesis, and certainly within this chapter, we view all Haskell de-
scription as a structural speciication of the digital circuit. Certain descriptions,
when viewed structurally, actually describe ininite structures. he compiler for
the descriptions, called CλaSH, cannot synthesise those ininite descriptions to a
low-level netlist format. We will henceforth refer to Haskell under the structural
view as: CλaSH, the language. Due to the aforementioned restrictions regarding
ininite structures, CλaSH is a (semantic) subset of Haskell.

3.1.1 A structural view

We already highlighted that we take a structural view on the speciications of our
digital circuits. Of course, a designer creates such a speciication with the intent
that the circuit exhibits a certain behaviour. So what exactly is this structural view?
In all fairness, a structural view, is not the view of the designer, but of the compiler
or synthesis tool. A compiler with a structural view just sees the circuit description
as an arrangement of the individual parts and the relations between those parts.
During translation from speciication to actual circuit, a structural synthesis tool
will preserve as much of the arrangement and relations as possible.

A circuit designer will, aside from reasoning about the behaviour of a circuit, also
want to reason about the non-functional properties of the circuit. Such properties
include for example the size of the circuit, or the maximum propagation delay be-
tween latches or registers. he structural view taken by the compiler permits a very
straightforward mental model for these non-functional properties. here are no
more, nor fewer (modulo optimisations), components than the designer speciied,
which makes reasoning about area straightforward. he number of components
between two latches is also ixed, making reasoning about propagation delays also
straightforward.

he structural view is a double-edged sword: it enables straightforward reasoning
about non-functional properties, but also burdens the designer with these non-
functional properties. It is up to the designer to, e.g., add pipelining to decrease
maximum propagation delays, or add control circuitry to reuse components over
multiple time-slots. A compiler with a structural view does not, in general, create
more components than directly speciied in the description.

In the next couple of sections we will describe how the language features of CλaSH
correspond to digital circuits given a structural view.

39

3.
2
ś
C
o
m
b
in
at

io
n
a
l
lo

g
ic

Function abstraction

1 f x1 x2 .. xN = r

Component deinition

f

x�
x�

xN

r

Listing 3.1 ś Correspondence between function abstractions and component deinitions

3.2 Combinational logic

3.2.1 Function abstraction and application

Two basic elements of a functional language are function abstraction and function
application. With the structural view, a function corresponds to a component in a
digital circuit, where:

ż he function arguments become the input ports (or pins).

ż he result of the function is connected to the output port.

A visual correspondence between functions and components is depicted in list-
ing 3.1. here we see a function f with N arguments (x1 to xN) and a result r. Below
that, we see that this corresponds to a component f , with N input ports (x1 to
xN), and an output port which is connected to the wire r carrying the result of the
component.

Function application is subsequently seen as component instantiation, where:

ż he applied arguments are connected to the input ports of the instantiated
component.

ż he output port is connected to a the wire that carries the result.

Amore visual correspondence between function application and component instan-
tiation is given in listing 3.2. here we see a function g, which, in its where-clause,
applies two functions p and q, binding their results to the variables d and e. In
the corresponding component g we see the two instantiated components p and q,
where their respective output ports are connected to the wires labelled d and e.

Although drawn as single lines in the previous two igures, the connections between
the components and ports can consist out of multiple wires. he number of wires
needed for these connections are of course determined by the values that low
through them. In section 3.2.2, where we discuss types, we will elaborate how these
numbers are exactly derived.

40

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Function application

1 g a b c = e
2 where

3 d = p a b
4 e = q d c

Component instantiation

g

a

b

c

e
p

q

d

Listing 3.2 ś Correspondence between function application and component instantiation

In the introduction we said that certain speciications describe ininite structures,
these speciications are ones that contain recursive functions. Under the structural
view, the recursive/self-application of a function corresponds to the unbounded
self-instantiation of the synthesised component, hence resulting in an ininite struc-
ture. Although reasoning about ininite structures is not necessarily diicult, these
ininite structures cannot be realised as actual circuits. By unfolding the deinition
of the functions at their place of recursive application, a compiler can remove one
layer of self-instantiation at a time. Under the structural view, only those recur-
sive functions for which the exact number of recursive applications can be fully
determined at compile-time are thus realisable as a circuit.

Where we have to restrict the creation and use of recursive functions for these func-
tions to be realisable as a circuit under the structural view, the structural view poses
no such limitations on value recursion. Actually, value recursion in a description
oten corresponds to a feedback loop in the realised circuit, as depicted in listing 3.3
(which was already shown in chapter 1).

3.2.2 Types

As already hinted to earlier in this chapter, it are the types of the variables and
functions that inform us howmany wires are needed to connect the components in
our circuit. Compilers generally have a notion of primitive types, types which the
designer can use, but cannot deine him- or herself. For CλaSH, there is a similar
notion in determining the number of bits to encode values of certain types, and
hence the number of wires needed to connect components. here is a set of types
for which the compiler has hardcoded knowledge on how many bits are needed to
represent its values, were refer to this set of types as hardcoded types. he other
types will simply be referred to as user-deined types.

41

3.
2.
2
ś
T
y
pe
s

Value recursion

1 srLatch r s = (q ,nq)
2 where

3 q = nor r nq
4 nq = nor q s

Feedback loop

s

r
q

q

srLatch

Listing 3.3 ś Correspondence between value recursion and feedback loops

Hardcoded types

he following types in CλaSH have hardcoded bit-widths:

Signed n, Unsiged n: hese two types are internally deined as:

1 newtype Signed (n :: Nat) = S Integer
2 newtype Unsigned (n :: Nat) = U Integer

And are used to represent signed and unsigned integers respectively. Inter-
nally they are represented by ininite-precision integers, but the functions
operating on these values treat them as n-bit integers, where n refers to their
type-parameter which is a type-level Natural number¹. he number of bits
needed to encode these types is hence this equal to the number n.

Vec n a: Where this type is deined as:

1 data Vec :: Nat → * → * where
2 Nil :: Vec 0 a
3 (:>) :: a → Vec n a → Vec (n + 1) a

his type speciies a list (or Vector) of elements, where the length is stati-
cally encoded in the type as its irst parameter. he second type parameter
denotes its element type². Given that the bit-width can be calculated for
the element type, the total bit-width of the entire vector is simply its length
times the bit-width of the element.

1Haskell has a strict phase separation between compile-time and run-time, meaning that type-level
numbers are not the same as term-level values. So even though a type-level number and the term-level
value can share the same symbol for their representation, i.e. the symbol 2, they are completely distinct.

2he kind (type of types) ⋆ represents all simple types, like Int and Char→ Bool.

42

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

User-deined types

A designer may deine a completely new type by using the data keyword. he
following algebraic types have a fully determinable bit-width:

Product types: A product type has a single constructor which has multiple ields,
such as tuples, and record types. An example of a product type would be:

1 data Enabled a = Enabled Bool a

Which has one constructor, Enabled, and two ields: one of type Bool and
one with the type of the type parameter a. he bit-width of a product type
is simply the sum of the bit-width of the types of its ields.

Simple sum types (enumerations): Simple sum types, or enumerations, have mul-
tiple constructors, but where the constructors have no ields. A well known
enumeration is the Boolean type:

1 data Bool = False | True

he bit-width for these types is: ⌈log2 c⌉, where c is the number of construc-
tors.

Sum types: Sum types (sometimes called sum-of-product types to diferentiate
from simple sum types) have multiple constructors, where the constructors
can have multiple ields. A well know sum type is the Either type:

1 data Either a b = Let a | Right b

Which has two constructors, and each constructor has one ield. he bit-
width of a sum type is calculated by:

1. For every constructor: sum the bit-width of their respective ields.

2. Calculate the maximum of these sums.

3. Add ⌈log2 c⌉, where c is the number of constructors.

Recursively deined types can, in general, not be given a ixed bit-width: it usually
not possible to determine how many times a recursive type can be unfolded. hat
is also the main reason why the Vector type has a hard-coded bit-width calculation.
However, the very fact that there is a hard-coded calculation indicates that it is
not impossible to determine the bit-width for certain recursive types. For Vectors,
the size can be fully determined due to the fact that it has a natural number as a
type-parameter which restricts both which and how many of its constructors must
be used to create a valid value. Generalising such an analysis to other recursive
data types is considered future work.

3.2.3 Choice

In Haskell, choice can be achieved by a large set of syntactic elements, consisting of:
case expressions, if−then−else expressions, multiple-clause function deinitions,

43

3.
2.
3
ś
C
h
o
ic
e

and guards. he most general of these are the (pattern-matching) case expressions:
all others forms of choice can be translated to case expressions. We hence use the
circuit interpretation for case expressions as the circuit interpretation for all choice
constructs.

In general, a case expression is of the form:

1 case subject of
2 C1 x1 .. xM → alternative1
3 ..
4 CN y1 .. yK → alternativeN

Where an alternative is chosen based on the constructor shape (C1 ..CN) of the
subject. Aside from choosing an alternative, the case expressions also binds the
ields corresponding to the constructor to variables (x1 ..xM), which can be used
in the selected alternative. hese two aspects of case-expressions, selection and
projection, have separate circuit interpretations.

We start with the interpretation for selection. he structural view on the selection
aspect gives us amultiplexer, where:

ż he wires representing the constructor part of the subject are connected to
the selection port.

ż he result of the alternatives are connected to the input ports.

For the synthesis of expressions to circuits we assume that all the functions that we
will be working with are side-efect free, which is an aspect that can be statically
asserted inHaskell. When the expressions in the alternatives are side-efect free, the
parallel calculations happening in the eventual circuit will not interfere with each
other. he observed behaviour of the complete circuit, of what in sotware terms
would be called łspeculativež parallel execution, is hence faithful to the semantics
of the case-expression³.

Two, semantically equal but syntactically distinct, code examples of a counter cir-
cuit, and the circuit interpretation that corresponds to both speciications, are given
in listing 3.4. he function counts up or down depending on the direction variable,
and has a wrap variable that determines the wrap-around point of the counter.

he other aspect of case expressions, aside from selection, is binding the values of
constructor ields to variables. his aspect is called projection. Given that a value
of a data type with ields travels over N wires, projection is simply continuing with
M of these wires that represent the ield. Listing 3.5 demonstrates this projection
aspect of case expressions and the corresponding circuit interpretation for a simple
product type. In this igure we mark the bit-width (in the form of bit-indices) of
the individual wires to get a better understanding of the circuit interpretation for
projection.

3Assuming no alternative evaluates to bottom, which also would not have a circuit representation.

44

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Description using case and if−then−else expressions

1 data Direction = Up | Down
2

3 counter wrap direction x = case direction of

4 Up → if x < wrap then

5 x + 1 else

6 0

7 Down → if x > 0 then

8 x − 1 else

9 wrap

Description using pattern matching and guards

1 data Direction = Up | Down
2

3 counter wrap Up x | x < wrap = x + 1

4 | otherwise = 0

5

6 counter wrap Down x | x > 0 = x − 1

7 | otherwise = wrap

Circuit interpretation

x

wrap

direction

+

counter

�

�

<

-

>

�

�

Vcc

Vcc

Listing 3.4 ś Counter circuit

In listing 3.6 we see the projection for a sum type, and the corresponding circuit
interpretation. Here we see that the wires representing b and y use overlapping
bit-indices (∥7 ∶ 0∥ and ∥7 ∶ 7∥ out of the original ∥8 ∶ 0∥). his means that, when the
sf value is constructed by SumS8, the sub-circuit representing the alternative for
the SumB branch is not really operating on a Boolean value. here is an analogous
situation in the other alternative when sf value is constructed by SumB. However,

45

3.
3
ś
H
ig
h
er

le
v
el

a
b
st
r
a
c
t
io
n
s

Haskell code

1 data Pair = Pair (Signed 8) (Signed 4)
2

3 addPair ab = case ab of

4 Pair l r → l + resize r

Circuit interpretation

ab +

addPair

[�� ∶ �]
[�� ∶ �]

[� ∶ �]
resize

[� ∶ �]
[� ∶ �]

l

r

Listing 3.5 ś Projection of a product type

even though the alternatives will be working on erroneous values in the above
situations, because the expressions belonging to the alternatives are side-efect free,
their corresponding sub-circuits will not afect the observable behaviour of the
complete circuit. hat is, the multiplexer will never output the value belonging to
the erroneous alternative, and there is no information low between the alternatives.

A inal side-note that we want to make regarding both past and future circuit di-
agrams in this thesis: we will (oten) draw individual ports and wires for the in-
dividual ields in a product type. Drawing separate wires, instead of splitting and
combining wires, improves readability and does not afect the semantics of the
diagram.

3.3 Higher level abstractions

3.3.1 Polymorphism

Polymorphism allows a function to handle values of diferent data types in a uniform
way. Haskell supports parametric polymorphism, meaning that functions can be
written to work on values with an arbitrary type. As an example of a parametric
polymorphic function, consider the type of the fst function, which returns the
irst element of a tuple:

1 fst :: (a ,b) → a
2 fst (x ,_) = x

he type of fst is parametrised in a and b. his means that fst works for any tuple,
regardless of what elements it contained in the tuple. his kind of polymorphism
is very useful in circuit design, examples include: routing signals without knowing
their exact type, or, specifying vector operations that work on vectors of any length

46

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Haskell code

1 data SumF = SumS8 (Signed 8)
2 | SumB Bool
3

4 eitherS sf x = case sf of

5 SumS8 y → x + y
6 SumB b → if b then x else 0

Circuit interpretation

sf

+

eitherS

[� ∶ �]

[� ∶ �]

[� ∶ �]

[� ∶ �]

[� ∶ �]
[� ∶ �]

[� ∶ �]
[� ∶ �]

[� ∶ �]
�

x

y

b

Listing 3.6 ś Projection of a sum type

and element type. Polymorphism also plays an important role inmost higher-order
functions, as will be shown in the next subsection.

Another type of polymorphism supported in Haskell is ad-hoc polymorphism. In
ad-hoc polymorphism, a function with a single interface can have diferent func-
tionality depending on the type it is instantiated for. A primary example are the
numeric operators ((+), (*), etc.), that have a single interface (e.g.: (*) :: Num a
⇒ a → a → a), but operate diferently whether applied to e.g. integers or complex
numbers.

In Haskell, ad-hoc polymorphism is achieved through type classes, where a class
deinition provides the general interface of a function, and class instances deine
the functionality for the speciic types. For example, certain numeric operators are
gathered in the Num class (listing 3.7); so if we want to have those operators work
on values of our type we must create an instance of Num for that type.

By preixing a type signature of a function with class constraints (e.g.: Num a⇒),
type parameters are constrained to types that have an instance for that class. For
example, the arguments of the subtract function must have a type which has an
instance for the Num type class because the subtract function subtracts them using
the (-) operator (listing 3.8).

47

3.
3.
1
ś
P
o
ly
m
o
r
ph

is
m

Type class deinition (partial)

1 class Num a where
2 (+) :: a → a → a
3 (*) :: a → a → a
4 (−) :: a → a → a
5 ...

Instance for Integer (partial)

1 instance Num Integer where

2 (+) = plusInteger
3 (−) = minusInteger
4 (*) = timesInteger
5 ...

Instance for Complex (partial)

1 data Complex a = !a :+ !a
2

3 instance (RealFloat a) ⇒ Num (Complex a) where
4 (x:+y) + (x ’:+ y ’) = (x+x ’) :+ (y+y ’)
5 (x:+y) − (x ’:+ y ’) = (x−x’) :+ (y−y ’)
6 (x:+y) * (x ’:+ y ’) = (x*x’−y*y ’) :+ (x*y’+y*x ’)
7 ...

Listing 3.7 ś he Num type class and instances for Complex and Integer

1 subtract :: Num a⇒ a → a → a
2 subtract x y = y − x

Listing 3.8 ś Function using a type-class method

CλaSH supports both parametric polymorphism and ad-hoc polymorphism. A
circuit designer can specify his own type classes and corresponding instances. here
is, however, one constraint on parametric polymorphism: the function at the root
of the function hierarchy4 cannot have polymorphic arguments, nor a polymorphic
result. his constraint is suicient to infer and propagate the concrete types in the
rest of function hierarchy. As elaborated in section 3.2.2, we need to know the
concrete types of the arguments and results to determine the bit-width for the
values lowing through the circuit.

4InHaskell the function at the root of the function hierarchy is calledmain, inCλaSH it is topEntity.

48

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

1 map :: (a → b) → [a] → [b]
2 map _ [] = []
3 map f (x : xs) = f x : map f xs

Listing 3.9 ś he, higher order,map function

1 vmap :: (a → b) → Vec n a → Vec n b
2 vmap _ Nil = Nil
3 vmap f (x:>xs) = f x :> vmap f xs

Listing 3.10 ś he, higher order, vmap function

3.3.2 Higher-order functions

In Haskell, functions are irst class, meaning that a function can have other func-
tions both as arguments, and as its result. Functions that have other functions as
arguments are called higher-order functions. An ubiquitous higher-order function
in Haskell, and CλaSH, is themap function: the code for the map function is give
in listing 3.9.

his map function applies a function f to all values in the list xs. For conversion
to a circuit there are two problems with themap function:

ż It works with the recursive list type, a type for which we cannot determine
the number of bits needed to encode a list value. Another problem is that
the list can be ininite.

ż It is a recursive function, which, under the structural view, potentially de-
scribes ininite structure.

he equivalent function forVectors, the vmap function (shown in listing 3.10), does,
however, not sufer from these problems:

ż heVector type has a hard-coded bit-width calculation, so we can determine
the number of bits needed to encode a Vector value. Because the length of
the Vector is encoded as a natural number in its type, it is also impossible to
create an ininitely long Vector. It can be very long, but never, by deinition,
ininitely long: ininity is not a member of the natural numbers.

ż he function can be completely unfolded, even when the function is not
applied to a concrete vector, there are hence no ininite structures. he
reason that we can completely unfold the deinition is that the type of the
Vector allows us to infer which constructor must be used. When the vector
is of length zero, it must be created with Nil, while non-zero length vectors
must be created with :>.

49

3.
3.
2
ś
H
ig
h
er

-o
r
d
er

fu
n
c
t
io
n
s

So when we have:

1 topEntity :: Vec 4 Bool → Vec 4 Bool
2 topEntity xs4 = vmap not xs4

he compiler can correctly unfold vmap once to:

1 topEntity :: Vec 4 Bool → Vec 4 Bool
2 topEntity xs4 =
3 let x3 = case xs4 of (x :> _) → x
4 −− xs3 :: Vec 3 Bool
5 xs3 = case xs4 of (_ :> xs) → xs
6 in not x3 :> vmap not xs3

We repeat this process until we arrive at:

1

2 topEntity :: Vec 4 Bool → Vec 4 Bool
3 topEntity xs4 =
4 let x3 = case xs4 of (x :> _) → x
5 −− xs3 :: Vec 3 Bool
6 xs3 = case xs4 of (_ :> xs) → xs
7 in not x3 :> let
8 x2 = case xs3 of (x :> _) → x
9 −− xs2 :: Vec 2 Bool

10 xs2 = case xs3 of (_ :> xs) → xs
11 in not x2 :> let
12 x1 = case xs2 of (x :> _) → x
13 −− xs1 :: Vec 1 Bool
14 xs1 = case xs2 of (_ :> xs) → xs
15 in not x1 :> let
16 x0 = case xs1 of (x :> _) → x
17 −− xs0 :: Vec 0 Bool
18 xs0 = case xs1 of (_ :> xs) → xs
19 in not x0 :> Nil

he completely unfolded deinition corresponds to four not-gates in parallel, one
for each element in the vector. We can see the original circuit description, and the
circuit representation of the completely unfolded deinition in listing 3.11.

Due to the aforementioned properties of the vector data type, all structurally recur-
sive functions over vectors can be completely unfolded at compile-time. Higher-
order functions over vectors can hence be used to capture many (parallel) com-
position patterns that are common in digital circuits. In listings 3.12 to 3.14 we
see three such vector functions (vmap, vzipWith, and vfoldl), and their structural
interpretations. hese general structures of the corresponding circuits only emerge
when the element types of the vectors have a straightforward bit-encoding.

50

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Haskell code

1 topEntity :: Vec 4 Bool → Vec 4 Bool
2 topEntity xs4 = vmap not xs4

Circuit interpretation

x�

xs�

x� x�

topEntity

x�

Listing 3.11 ś Four not-gates in parallel

Haskell code

1 vmap f xs

Circuit interpretation

xNx�x�

f

x� x�

f f f f

Listing 3.12 ś vmap: parallel composition of a unary function

hat is, taking a look at listing 3.15, the circuit interpretation of vzipWith ($) (
vmap (+) xs) ys is not the irst, erroneous, interpretation where we see both the
vmap and vzipWith stucture. he element types of the vector resulting from vmap
(+) xs are functions, which, under the structural view, have no (straightforward)
bit-encoding. he proper circuit interpretation is thus the second circuit, where the
vmap-related structure is completely eliminated, and only the vzipWith structure
remains.

51

3.
3.
2
ś
H
ig
h
er

-o
r
d
er

fu
n
c
t
io
n
s

Haskell code

1 vzipWith f xs ys

Circuit interpretation

xNx�x�

f

y� y� yNx�x� y� y�

f f f f

Listing 3.13 ś vzipWith: parallel composition of a binary function

Haskell code

1 vfoldl f z xs

Circuit interpretation

xNx�x�

f f fz f f

x� x�

Listing 3.14 ś vfoldl: let-associative reduction

his leads us to place a constraint on the use of higher-order functionality similar
to the constraint placed on the use of polymorphism. hat is, the function at the
top of the function hierarchy can have neither:

ż Arguments that are, or contain, values of a function type, nor,

ż A result that is, or contains, a value of a function type.

Just as for polymorphism, higher-order functionality can be used in all other parts
of the function hierarchy.

An example of a common circuit where polymorphism and higher-order functions
lead to a very concise and natural description is: a crossbar. he code for this ex-
ample can be seen in listing 3.16. he crossbar function selects those values from
inputs that are indicated by the indexes in the vector selects. he interplay of poly-
morphism and higher-order functions results in a description that is both concise,
and, without any form of annotation, highly parametric:

ż It is polymorphic in the number of inputs, which is deined by the vector
length of inputs.

ż It is polymorphic in the number of outputs, which is deined by the vector
length of selects.

52

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Haskell code

1 vzipWith ($) (vmap (+) xs) ys

Erroneous circuit interpretation

xNx�x�

�

y� y� yNx�x� y� y�

+

�

+

�

+

�

+

�

+

Proper circuit interpretation

xNx�x� y� y� yNx�x� y� y�

+ + + + +

Listing 3.15 ś Erroneous and proper circuit interpretation

ż It is polymorphic in the values of the data, which deined by the element
type of inputs.

he crossbar function is just one ofmany exampleswhere polymorphismandhigher-
order functions lead to a concise design that is naturally parametric; we will see
more examples in chapter 5.

3.4 Sequential logic

Until now, we have only witnessed how we can describe combinational circuit in
Haskell. As already highlighted in chapter 1, the behaviour of a function in Haskell
is not inluenced by any notion of time. Hence, under the structural view, functions
in Haskell mapmost faithfully to combinational circuits. Does this mean we cannot
describe sequential logic under this structural view?

When we take a look at a language that has a behavioural synthesis approach, such
as Verity [23], we see that the resulting circuits have sequential elements. As already
described earlier, the structural interpretation of general recursive functions are
circuits with ininite structure, the behavioural interpretation taken by e.g. Verity
does, however, not sufer from this problem. Verity’s GoS [23] approach introduces
sequential elements in the circuit, resulting in a circuit that calculates the result of
the recursive function over multiple cycles. he behavioural synthesis approach
thus translated the time-independent behaviour of the function, to a circuit whose
behaviour is time-dependent. he created circuit gets extra ports to indicate when

53

3.
4.
1
ś
Sy
n
c
h
r
o
n
o
u
s
se
q
u
en

t
ia
l
c
ir
c
u
it
s

Haskell code

1 crossbar inputs selects = vmap (inputs !!) selects

Circuit interpretation

inputs

selects�

crossbar

selects� selects� selectsN

Listing 3.16 ś Crossbar

the data-ports contain a valid value: only at moments these ports are asserted does
the circuit exhibit the same external behaviour as the time-independent behaviour
of the original function.

In away, speciications subject to the behavioural synthesis approach do not actually
describe sequential logic, but the speciication getsmapped to sequential logic. We
also already saw in chapter 1 that the circuit interpretation of certain speciications
under the structural view give rise to sequential circuits, such as the description of
an SR-latch (listing 3.17). However, the semantics of the resulting sequential circuit
do notmatch the time-oblivious semantics of the functional speciication. What we
desire is a construct in Haskell where the semantics of the functional speciication
matches the semantics of resulting sequential circuit.

3.4.1 Synchronous sequential circuits

Quoting chapter 1:

Sequential logic in digital circuits can be divided into synchronous
and asynchronous logic. In synchronous logic, all memory elements
update their state in response to a clock signal. In asynchronous logic,
memory element can update their state at any time in response to a
changing input signal. he clock signal in synchronous logic is an
oscillating signal that is distributed to all the memory elements such
that they all observe its level change simultaneously. A crucial aspect

54

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Haskell code

1 srLatch :: Bit → Bit → (Bit , Bit)
2 srLatch r s = (q ,nq)
3 where

4 q = nor r nq
5 nq = nor q s

Circuit interpretation

s

r
q

q

srLatch

Listing 3.17 ś SR Latch

of synchronous logic is that the interval of the clock signal must
be long enough so that the input signals of the memory elements
can reach a stable value. he time it takes for a signal to become
stable is determined by the largest propagation delay between any
two memory elements with no other memory element in between.
he (combinational) logic betweenmemory elements must hence be
completely acyclic. Synchronous design allows a designer to abstract
from propagation delays, and reason about state changes as if they
happen instantaneously and synchronised.

In a synchronous sequential circuits we are hence not interested in the exact times
and levels of a signal, but only in the sequence of stable values of a signal. We can
model that abstraction of a signal as a stream, where the element in the stream
correspond to the stable values for the consecutive clock ticks:

1 data Signal a = a :− Signal a

Functions deined over Signals can now be used to specify synchronous sequential
circuits.

We can now use value recursion to specify feedback loops where, unlike the feed-
back loop in the SR-latch speciication (listing 3.17), we have a one-to-one correspon-
dence between the functional semantics of the speciication, and the synchronous
sequential semantics of the derived circuit. For example, given:

55

3.
4.
1
ś
Sy
n
c
h
r
o
n
o
u
s
se
q
u
en

t
ia
l
c
ir
c
u
it
s

Haskell code

1 counter = s
2 where

3 s = register 0 (s + 1)

Sequential circuit interpretation

rst

clk

+

counter

�

D Q

Clr

s

Listing 3.18 ś Counter circuit

ż A function, register, whose result is a Signal where the initial sample is regis-
ter’s irst argument, followed by the samples of register’s second argument.
he behaviour of which corresponds to a d-liplop with an asynchronous
reset.

1 register :: a→Signal a→Signal a
2 register i s = i :− s

ż And a Num instance for Signal.

1 instance Num a⇒Num (Signal a) where
2 (a :− as) + (b :− bs) = a + b :− as + bs
3 fromInteger i = i :− fromInteger i
4 ...

We can create a circuit that counts the number of clock cycles since the last asyn-
chronous reset using the speciication shown in listing 3.18. he value recursion
on s, under the structural view, gives rise to the feedback loop between the register
and the adder. In listing 3.19 we can see that when we elaborate the speciication
of counter, in accordance with the functional semantics, we get a stream of values
corresponding to the number of elapsed clock cycles. he second part of listing 3.19
shows the timing diagram of the structurally derived circuit, where we can see that
there is truly a one-to-one mapping between the behaviour of the speciication and
the behaviour of the synthesised circuit.

56

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Elaboration of the counter function

1 −− d e f i n i t i o n o f ’ s ’
2 r e g i s t e r 0 (s + 1)
3 −− d e f i n i t i o n o f ’ r e g i s t e r ’
4 0 :− s + 1

5 −− d e f i n i t i o n o f ’ s ’
6 0 :− r e g i s t e r 0 (s + 1) + 1

7 −− d e f i n i t i o n o f ’ r e g i s t e r ’
8 0 :− (0 :− s + 1) + 1

9 −− d e f i n i t i o n o f ’+ ’ and ’ f r om I n t e g e r ’
10 0 :− 0 + 1 :− s + 1 + 1

11 −− d e f i n i t i o n o f ’+ ’
12 0 :− 1 :− s + 1 + 1

13 −− d e f i n i t i o n o f ’ s ’
14 0 :− 1 :− r e g i s t e r 0 (s + 1) + 1 + 1

15 −− d e f i n i t i o n o f ’ r e g i s t e r ’
16 0 :− 1 :− (0 :− (s + 1)) + 1 + 1

17 −− d e f i n i t i o n o f ’+ ’ and ’ f r om I n t e g e r ’
18 0 :− 1 :− 0 + 1 + 1 :− s + 1 + 1 + 1

19 −− d e f i n i t i o n o f ’+ ’
20 0 :− 1 :− 2 :− s + 1 + 1 + 1

Timing diagram of the counter circuit

rst

clk

D 1 2 3 4 5

Q 0 1 2 3 4

Listing 3.19 ś Elaboration of the counter speciication (listing 3.18) and the timing diagram
of the structurally derived circuit

3.4.2 A safe interface for Signal

We have seen that adding an element to the head of the Signal stream corresponds
to a memory element in the derived circuit:

1 register :: a → Signal a → Signal a
2 register i s = i :− s

Many forms of Signalmanipulations do, however, not have a corresponding circuit
interpretation. For example, the following speciication:

1 delayInc :: a → Signal a → Signal a
2 delayInc i (s :− ss) = i :− s :− delayInc i ss

57

3.
4.
2
ś
A
sa
fe

in
t
er
fa
c
e
fo

r
Si
g
n
a
l

1 class Functor f where
2 fmap :: (a → b) → f a → f b
3

4 (⟨$⟩) :: Functor f ⇒ (a → b) → f a → f b
5 f ⟨$⟩ a = fmap f a
6

7 class Functor f ⇒ Applicative f where
8 pure :: a → f a
9 (⟨∗⟩) :: f (a → b) → f a → f b

10

11 instance Functor Signal where
12 fmap f (s :− ss) = f s :− fmap f ss
13

14 instance Applicative Signal where
15 pure a = let s = a :− s in s
16 (f :− fs) ⟨∗⟩ ~(a :− as) = f a :− fs ⟨∗⟩ as

Listing 3.20 ś Applicative Functor [42] interface for Signal

Would result in a circuit that has the following waveform:

clk

In In0 In1 In2 In3 In4 In5 In6 In6 In7

Out i In0 i In1 i In2 i In3 i

Where we can clearly see that subsequent input values are delayed by an increasing
number of clock cycles on the output. Such a circuit would need an ininite amount
of memory and is clearly not realisable.

To protect the circuit designer from himself, it is preferable to hide the construc-
tor, (:−), and instead ofer an interface to the Signal data type, and accompanying
primitive(s), through which he can only specify realisable sequential circuits. We
have already seen the most important primitive, the register function, which is the
only primitive that can introduce memory elements in a circuit. Signals can subse-
quently only be manipulated through an Applicative Functor [42] interface, which
is shown in listing 3.20.

Using the operators of theApplicative and Functor type class we can apply a function
that only works on the individual elements of a Signal, a function representing a
combinational circuit, to operate on all elements in the Signal sequentially. We
can elaborate the use of these operators more clearly using the example shown in
listing 3.21.

58

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Combinational multiply-and-add speciication

1 multiplyAndAdd :: Signed 7 → Signed 7 → Signed 7 → Signed 7

2 multiplyAndAdd x y acc = x * y + acc

Sequential multiply-and-accumulate (MAC) speciication

1 mac :: Signal (Signed 7) → Signal (Signed 7) → Signal (Signed 7)
2 mac x y = acc
3 where

4 acc = register 0 acc ’
5 acc ’ = multiplyAndAdd ⟨$⟩ x ⟨∗⟩ y ⟨∗⟩ acc

DerivedMAC circuit

rst

clk

mac

x

D Q

Clr

multiplyAndAdd

y
∗
+

Listing 3.21 ś Multiply-and-Accumulate circuit

At the top of listing 3.21 we see the combinational multiplyAndAdd function that
multiplies the two number x and y, and adds a third number, acc, to the result
of this multiplication. In the middle part of listing 3.21 we create the sequential
multiply-and-accumulate (MAC) function, where we apply the (combinational)
multiplyAndAdd function, which expects arguments of type Signed 7, to variables
of a Signal type, Signal (Signed 7), using the ⟨$⟩ and ⟨∗⟩ operators. he derived
circuit is depicted at the bottom of listing 3.21.

3.4.3 Abstractions over Signal

All sequential circuits will ultimately be composed out of:

ż he register function, and,

ż he pure, ⟨$⟩, and ⟨∗⟩ functions that lit combinational values and functions
to the sequential Signal domain.

59

3.
4.
3
ś
A
b
st
r
a
c
t
io
n
s
o
v
er

Si
g
n
a
l

Haskell code

1 circuit :: State → Input → (State ,Output)
2 circuit currentState inputs = (newState , output)
3 where

4 newState = f currentState inputs
5 output = g currentState inputs

Sequential circuit interpretation

rst

clk

inputs

D Q

Clr

circuit

g

f

currentState newState

output

Listing 3.22 ś Mealy machine

Although working directly with these functions and operators suices for small
circuits, it is preferable to take a more principled approach when designing larger
circuits. One such approach, originally put forward as the main technique for
designing sequential circuits in CλaSH prior to the Signal type ([38] and [CB:7]),
is to design every sequential circuit by solely specifying the combinational circuit
part of a Mealy machine [44]. A circuit speciication would follow the template
given in listing 3.22.

Where both the new state of the circuit, and the output of the circuit, are a function
of the current state and the inputs. he multiply-and-accumulate (MAC) circuit is
described as follows in the Mealy machine style:

1 macT :: Signed 7 → (Signed 7 , Signed 7) → (Signed 7 , Signed 7)
2 macT acc (x ,y) = (acc ’, acc)
3 where
4 acc ’ = x * y + acc

All that is missing to describe the complete behaviour of the circuit is its initial
state, the contents of the memory element on the irst clock cycle. What is needed
is a function that takes as arguments the standardised Mealy machine description,
the initial content of the memory, and cast it into a function that works on Signals.
his liting function is deined in listing 3.23. he complete speciication of the

60

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

1 (⟨^⟩) :: (s → i → (s ,o)) → s → (Signal i → Signal o)
2 mealyT ⟨^⟩ initS =
3 λinp → let r = register initS (fst ⟨$⟩ outp)
4 outp = mealyT ⟨$⟩ r ⟨∗⟩ inp
5 in snd ⟨$⟩ outp

Listing 3.23 ś Creating Mealy machines

1 (⟨^⟩) :: (s → i → (s ,o)) → s → (Signal i → Signal o)
2 mealyT ⟨^⟩ initS =
3 λinp → let r = register initS r ’
4 (r ’, outp) = unbundle (mealyT ⟨$⟩ r ⟨∗⟩ inp)
5 in outp

Listing 3.25 ś Creating Mealy machines

MAC circuit, with its cycle-by-cycle behaviour determined bymacT, and an initial
accumulation value of zero, is then given by:

1 mac = macT ⟨^⟩ 0

One set of functions that we need to introduce before we go on to the next topic, are
the bundle and unbundle functions, as they will be used in chapter 5. he observant
reader will notice that in the deinition of ⟨^⟩ that we used (fst ⟨$⟩outp), and (snd
⟨$⟩outp), to get the individual elements out of the tuple Signal (s,o) returned by
mealyT.hat is, we can not write: (r ’, outp) = mealyT ⟨$⟩ r ⟨∗⟩ inp, because the
expression: mealyT ⟨$⟩ s ⟨∗⟩ inp, has type Signal (s,o), and not (Signal s, Signal
o). he synchronisity assumption behind the Signal type does, however, ensure that
the two types are isomorphic. We capture this isomorphism with the Bundle type
class shown in listing 3.24, where we see both the class deinition and two instance
deinitions.

he Bundle type class deines the associated type [11], Unbundled a, which cap-
tures the other side of the isomorphism with Signal a, and the bundle and unbundle
functions that capture the transformations between these types. In the instance
declarations we see how Unbundled a captures the other side of the isomorphism,
where Unbundled (a,b) = (Signal a, Signal b) which is isomorphic to Signal (a,b),
and Unbundled (a,b,c) = (Signal a, Signal b, Signal c) which is isomorphic to Sig-
nal (a,b,c). Using the functions from the Bundle class we can now write the (⟨^⟩)
combinator as shown in listing 3.25.

61

3.
4.
4
ś
M
u
lt
ip
le

c
lo

c
k
d
o
m
a
in
s

Bundle type class

1 class Bundle a where

2 type Unbundled a
3 bundle :: Unbundled a → Signal a
4 unbundle :: Signal a → Unbundled a

Bundle instance for 2-tuple

1 instance Bundle (a ,b) where

2 type Unbundled (a ,b) = (Signal a , Signal b)
3 bundle (a ,b) = (,) ⟨$⟩ a ⟨∗⟩ b
4 unbundle ab = (fst ⟨$⟩ ab ,snd ⟨$⟩ ab)

Bundle instance for 3-tuple

1 instance Bundle (a ,b , c) where

2 type Unbundled (a ,b , c) = (Signal a , Signal b , Signal c)
3 bundle (a ,b , c) = (,,) ⟨$⟩ a ⟨∗⟩ b ⟨∗⟩ c
4 unbundle abc = ((λ(x ,_ ,_) → x) ⟨$⟩ abc
5 ,(λ(_ ,x ,_) → x) ⟨$⟩ abc
6 ,(λ(_ ,_ ,x) → x) ⟨$⟩ abc)

Listing 3.24 ś Bundle type class and instances

3.4.4 Multiple clock domains

he Signal constructs gives rise to synchronous sequential circuits that are syn-
chronised to a single, unnamed, clock. We can generalise the Signal construct by
naming the clock the circuit is synchronised to, and consequently give rise to com-
positions of circuits that are synchronised to diferent clocks. We implement these
Signals with a named clock as a newtypewrapper around the Signal data type, using
a phantom type to represent the clock to which the circuit is synchronised:

1 newtype CSignal (clk :: Clock) a = CSignal (Signal a)

he kind of the type parameter clk isClock, which is a promoted data type [75] given
by:

1 data Clock = Clk Symbol Nat

Where Symbol is a type-level String, and Nat is a type-level natural number. he
Symbol is the actual name of clock, and the Nat represents the period of the clock,
where this period is dimensionless. he periods are dimensionless as we are only
interested in relative diferences between clocks. hat is, when we compare, Clk "
A" 725, with, Clk "B" 225, the only statement that we want to make is that "A" has
a 29

9
longer period than "B". he reason to include both the name and the period

of the clock will be made clear at the end of this section.

62

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

1 data Clock = Clk Symbol Nat
2

3 data SNat (n :: Nat) where SNat :: KnownNat n ⇒ SNat n
4 data SSym (s :: Symbol) where SSym :: KnownSymbol s⇒ SSym s
5

6 data SClock (clk :: Clock) where
7 SClock :: SSym name→ SNat rate → SClock (Clk name rate)

Listing 3.26 ś SClock singleton type

For similar safety reasons as those for hiding the (:−) constructor for the Signal
type, so too will the CSignal constructor be hidden from the circuit designer. As for
the Signal type, we expose one primitive, cregister, which can introduce memory
elements in circuit speciications working on CSignals:

1 cregister :: SClock clk → a → CSignal clk a → CSignal clk a
2 cregister _ i (CSignal s) = CSignal (i :− s)

Which has nearly the same signature as the register function, except that it gets
an extra singleton [15] argument that represents the clock to which the register is
synchronised. he singleton type, SClock clk, is used as the value representation, or
witness, of the clk type which encodes the clock to which the circuit is synchronised
to. Wedeine SClock in listing 3.26, where the constructor, SClock, uses the singleton
types SSym and SNat as arguments for the name and period of the clock.

We need these singleton types because Haskell has a clear phase-distinction be-
tween values / terms and types, meaning, amongst others, that types cannot be
indexed by terms. In a dependently typed language, such as Idris [9], we could
have deined cregister as:

1 cregister : (clk : Clock) → a → CSignal clk a → CSignal clk a
2 cregister _ i (CSignal s) = CSignal (i :− s)

Where clk would be a normal value, instead of a type.

Composition of multiple clock domains

By encoding the clock in CSignal’s type we ensure, in a type-safe manner, that
circuits synchronised to one clock do not access signals belonging to a circuit syn-
chronised to another clock by accident. hat is, applying a function f , with the
type:

1 f :: CSignal (Clk "A" 725) Bool → CSignal (Clk "A" 725) Bool

To an argument a, with the type:

63

3.
4.
4
ś
M
u
lt
ip
le

c
lo

c
k
d
o
m
a
in
s

1 a :: CSignal (Clk "B" 225) Bool

Gives rise to a type error. hese so-called clock domain crossings should only
happen under clear intent of the circuit designer. hat is, the designer will have to
explicitly compose f with function a sync that has the type:

1 sync :: CSignal (Clk "B" 225) Bool → CSignal (Clk "A" 775) Bool

Which can synchronise the signals in clock domain "B" to clock domain "A".

Signals that originate from a circuit synchronised to a clock "A", and connected to
a circuit synchronised to a clock "B", are considered asynchronous inputs for the
circuit synchronised to clock "B". Asynchronous inputs can induce meta-stability
in bi-stable circuits, such as d-liplops, which are used as memory elements in
synchronous circuits. Memory elements in a meta-stable state output a value that
is neither logically 0 nor logically 1, but somewhere in-between (or in some cases
oscillating between the two, in a rate diferent from the clock rate). Such an error
value can quickly lead to a complete (logical) failure of the circuit. Synchronisers
are circuit elements that, as the name suggests, synchronise asynchronous inputs
to the clock to which the rest of circuit is synchronised to. Although they do not
completely prevent the memory elements in a circuit from ever going into a meta-
stable state, they reduce the chance at meta-stability to a statistically acceptable
level (e.g. once every ten years).

here are many possible designs for these synchronisers, each with their own suit-
ability for a speciic situation. he fact that meta-stability leads to failure, and that
there are many possible synchroniser designs, led us the design where the clocks
are encoded at the type-level in CSignal, thereby always forcing the designer to
make an (informed) choice in synchroniser design when crossing clock domains.

Synchronisation primitive

Although the synchronisation circuits can be described in terms of the functions
and primitives described earlier in this chapter, we need one extra primitive that
does the actual conversion from, CSignal ClkA a, to, CSignal ClkB a. his prim-
itive, unsafeSynchroniser, whose exact behaviour is described in appendix B, will
basically be represented by a simple wire in the synthesised circuit. he name of
the primitive is preixed with the word unsafe because, although it converts a signal
from one clock domain to the other, it does nothing to reduce the chance for a
memory element to exhibit meta-stable behaviour. he type signature of unsafeSyn-
chroniser is:

1 unsafeSynchroniser :: SClock clk1
2 → SClock clk2
3 → CSignal clk1 a
4 → CSignal clk2 a

64

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Where we can see that the function has two singleton arguments, representing
the clock corresponding to the incoming signal, and the clock representing the
outgoing signal, respectively. he exact behaviour of the synchronisation primitive
conforms to a speciic scenario:

ż All the clocks in the system are derived from a single master clock, that is,
they are synchronised.

ż here is a shared reset signal for all clock domains, which is de-asserted just
before the simultaneous rising edges of all clock signals. All circuits thus
start at the same time.

Working with derived clocks in a multi-clock system is very common (in FPGAs),
so the behaviour of the synchronisation primitive covers many use-cases. his
does, however, mean that, if we are in a situation where the circuits have completely
independent clocks, the simulation behaviour will not correspond to every possible
observed behaviour of the synthesised multi-clock circuit. It will, in that situation,
only correspond to the one (rare) case that the clocks are accidentally in-sync.

So, in case the eventual circuit does work with derived clocks, and the circuit de-
signer wants to exploit this feature in a multi-clock design, the designer will be
able to observe the desired behaviour in simulation. When the eventual circuit
works with independent clocks, the designer must make sure that the correct func-
tioning of the circuit is not dependent on the in-sync behaviour exhibited by the
synchronisation primitive.

In listing 3.27, we can see: the code for a multi-clock circuit, the derived circuit,
and the timing diagram corresponding to the derived circuit. he circuit has three
clocks: onewith a period of 3, clk1, onewith a period of 2, clk2, and onewith a period
of 4, clk3. he circuit consists of a counter circuit, that starts counting from zero,
and is synchronised to clk1. he counter is connected to a register, R1, synchronised
to clk2, which is subsequently connected to a register, R2, synchronised to clk3. he
top of the timing diagram shows the resets and three clocks, and the outputs of
the individual sub-circuits. he clocks and the resets correspond to the scenario
sketched earlier. here are shaded vertical lines indicating when the three clocks
are synchronised: red when all three clocks are synchronised, and grey when only
two of the three clocks are synchronised.

he bottom of the timing diagram shows two hypothetical signals that describe
inputs of the two registers R1 and R2. By hypothetical we mean: what the inputs of
the registers R1 and R2 would have looked like if their inputs were synchronised to
the same clock as the registers themselves. hese signals, Din

1 and Din
2 , are derived

by time-shiting Q1 and Q2 one cycle of their respective clocks into the past.

65

3.
4.
4
ś
M
u
lt
ip
le

c
lo

c
k
d
o
m
a
in
s

Design with three clock domains

1 clk1 :: SClock (Clk " clk1 " 3)
2 clk1 = SClock SSym SNat
3

4 clk2 :: SClock (Clk " clk2 " 2)
5 clk2 = SClock SSym SNat
6

7 clk3 :: SClock (Clk " clk3 " 4)
8 clk3 = SClock SSym SNat
9

10 counter clk = let s = cregister clk 0 (s + 1) in s
11

12 multiClock = cregister clk3 50
13 $ unsafeSynchroniser clk2 clk3
14 $ cregister clk2 99
15 $ unsafeSynchroniser clk1 clk2
16 $ cout
17 where

18 cout = counter clk1

Derived circuit

rst�

clk� counter

Clr Clr

D� D�Q�Q�

clk� clk�

cout

rst� rst�
Timing diagram of the derived circuit

rst1

clk1

cout 0 1 2 3 4 5 6

rst2

clk2

Q1 99 0 1 2 2 3 4 4 5 6

rst3

clk3

Q2 50 99 1 2 4 5

Din
1

0 1 2 2 3 4 4 5 6 6

Din
2

99 1 2 4 5 6

Listing 3.27 ś Multi-clock design: speciication, circuit, and timing diagram

66

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

he synchronisation primitive, unsafeSynchroniser, is responsible for the creation
of the streams corresponding to the timing diagrams of these hypothetical signals.
So:

ż Given the stream of values corresponding to the timing diagram of cout :
[0 ,1 ,2 ,3 ,4 , ..) .

ż he unsafeSynchroniser primitive creates the oversampled signal that corre-
sponds to the timing diagram of Din

1 : [0 ,1 ,2 ,2 ,3 ,4 ,4 , ..) .

Similarly:

ż Given the stream of values corresponding to the timing diagram of Q1: [99
,0 ,1 ,2 ,2 ,3 ,4 ,4 , ..) .

ż he unsafeSynchroniser primitive creates the compressed signal correspond-
ing to the timing diagram of Din

2 : [99,1 ,2 ,4 , ..) .

Final remarks

Earlier we said we would explain why both the name and period of the clock are
encoded in the Clk type: the reason that we do is to have a simple and safe synchro-
nisation primitive. We encode the name of the clock so that we can distinguish
two independent clocks that have the same period. Two independent clocks, even
if they have the same period, must always be synchronised for the meta-stability
reasons stated earlier. We should hence not model such a system as having a single
clock. Choosing to encode the characteristics that set independent clocks with
the same period apart, such as phase-diference and drit-rates, would complicate
both the CSignal type, and the behaviour of the unsafeSynchroniser primitive. Only
encoding the name, but not the period, of the clock is potentially unsafe: it would
lead to a design where the periods would be speciied as part of unsafeSynchroniser.
his could give rise to situations where the same clock is erroneously attributed
with diferent periods at distinct locations of unsafeSynchroniser.

3.5 Conclusions and future work

his chapter showed how we can model / specify both combinational and syn-
chronous sequential circuits in CλaSH. Under the structural view, we can reason
straightforwardly how a speciication is synthesised to a circuit. In general, ev-
ery function application is synthesised to an instantiation of the corresponding
component. As a result, synthesised circuits are maximally parallel given their spec-
iication. A downside of the structural view is that sequential execution has to be
manually speciied: a designer will need to specify his own control logic to execute
an algorithm sequentially. In SAFL [47] for example, which takes a behavioural
synthesis approach, functions are only instantiated once, and function application
is translated to control logic to facilitate concurrent access resulting from multiple

67

3.
5
ś
C
o
n
c
lu

si
o
n
s
a
n
d
fu

t
u
r
e
w
o
r
k

function applications. In SAFL we would thus get a circuit that is (almost5) maxi-
mally sequential, and we have to duplicate functions to get a more parallel circuit.
In Verity [22] there is also no need to specify one’s own control logic: recursion
using its ix-point construct is mapped to sequential circuitry. Parallel composition,
however, has to be manually speciied.

In CλaSH, we model feedback loops by value recursion. Haskell’s non-strict eval-
uation mechanism makes both the speciication and simulation of these circuit
speciications far more natural than in a strict setting. In a strict setting, in order
to simulate our speciications, we would have to make sure that all computations
involved in a feedback loop are properly delayed by creating a thunk. One strict
operation somewhere in the function hierarchy would force the complete computa-
tion of the feedback loop. Aswe cannot know if a functionwill be used in a feedback
loop, we can only anticipate by creating thunks everywhere, basically mimicking
non-strict evaluation.

In an earlier version of CλaSH, [CB:7], we did not use the Signal type to model
the values manipulated by synchronous sequential circuits. Instead, we modelled
synchronous sequential circuits by solely describing the combinational part of a
Mealy machine (in the same way as we have seen them in section 3.4.3). As a result,
a composition of sequential circuits also had to be modelled in the form of a Mealy
machine. Additionally, the arguments and result representing the state of the sub-
components must be aggregated in the argument and result of the bigger Mealy
machine. hat is, given two Mealy machine descriptions, f and g, the function h
that composes them will look, in general form, like:

1 h ((fS ,gS) ,hS) inp = (((fS ’, gS ’) ,hS ’) ,outp)
2 where
3 (fS ’, ...) = f fS ...
4 (gS ’, ...) = g gS ...
5 hS ’ = ...
6 outp = ...

Where fS, gS, fS’, and gS’, correspond to the state of f and g, and, hS and hS’ corre-
spond to the state of h. he downside of this old approach is that the aggregation
is very repetitive, pollutes the local namespace of a function, and is prone to errors
that break the Mealy machine abstraction. By the latter we mean that sub-states of
the Mealy machines must be aggregated unchanged, and the current and updated
states have to appear in the same order across the argument and the result. hat is,
the following deinition of h would be erroneous:

1 h ((fS ,gS) ,hS) inp = (((gS ’, fS ’) ,hS ’) ,outp)
2 where
3 ...

5Primitive operations in SAFL are implicitly duplicated, and will hence operate in parallel.

68

C
h
a
pt
er

3
ś
C
A
E
S
L
a
n
g
u
a
g
e
fo

r
Sy
n
c
h
r
o
n
o
u
s
H
a
r
d
w
a
r
e

Where the updated state of g, gS’, is aggregated as the updated state of f , and visa-
versa. Depending on the types of fS’ and gS’, such a switch might be caught as a
type-error, or it might, in a more unfortunate situation, not be caught as a type
error.

In [CB:9] we describe how we encapsulate our Mealy machines description in
an automata arrow [53], and use the arrow notation [52] for the composition of
sequential circuits. he encapsulation in an automata arrow abstracts the process
of subdivision and aggregations of substates, thus solving the problems mentioned
earlier regarding manual subdivision and aggregation. Using arrows does, however,
have two downsides:

ż Arrows can only have one input: multiple inputs must hence be aggregated
in a tuple. Functions / Arrows representing a sequential circuit can hence
not be speciied in a curried form. Consequently, if one wants to partially
apply an arrow, he / she will need to wrap the arrow in a lambda abstraction
irst.

ż he arrow notation has its own local scope, meaning variables bound within
the arrow notation can only be referenced within the arrow-notation block,
and not from the where clause.

By using the Signal type as presented in this chapter we sufer from neither of the
above problems:

ż here is no special syntax for the composition of functions representing
sequential circuits, and consequently no separate scope. Composition can
be done within regular where-clauses and let -expressions.

ż We are not forced to aggregate the inputs of a function representing a sequen-
tial circuit into a tuple, meaning that a sequential circuit can be modelled
as a curried function. Consequently, partial application of a function rep-
resenting a sequential circuit is just as straightforward as partially applying
any other curried function.

3.5.1 Future work

Working with values of the Signal type precludes the use of straightforward pattern
matching in the speciications of sequential circuits. In section 3.4.3 we already saw
that a Signal of a product type is isomorphic to the product of Signal types, a fact
exploited by the Bundle type-class. Pattern matching on Signals of product types
is hence possible by manually inserting unbundle at the place we want to pattern
match. A possible extension, beyond what is currently supported by either Haskell
or the language extensions of GHC, is to insert bundle and unbundle automati-
cally, knowing that the isomorphism in the Bundle type class is guaranteed by the
synchronisity assumption underlying Signal. We could subsequently use pattern
matching on product types in speciications of sequential circuits, without having
to worry where to add bundle and unbundle.

69

3.
5.
1
ś
Fu

t
u
r
e
w
o
r
k

Pattern matching on Signals of sum types is even more diicult. First of all, there
is no isomorphism between a Signal of a sum-type, and a sum(-of-products) of a
Signal, meaning that we cannot deine a Bundle instance for sum types. What is,
however, possible is to emulate patterns and pattern matching using the techniques
for Lava, shown earlier in chapter 2. he disadvantages of those techniques have
also already been described in chapter 2. hose techniques also do not ofer a way
for functions to be deined in terms of multiple clauses. Future work lies in dein-
ing a synchronous semantics for pattern matching on sum-types from which an
implementation, perhaps using source-to-source transformations to a speciication
using the techniques in chapter 2, can follow.

70

71

4
Type-Directed Synthesis

Abstract ś A straightforward synthesis from functional languages to digital
circuits transforms variables towires. he types of these variables determine the
bit-width of the wires. Assigning a bit-width to polymorphic and function-type
variables within this direct synthesis scheme is impossible. Using a term rewrite
system, polymorphic and function-type binders can be completely eliminated
from a circuit description, given only minor and reasonable restrictions on the
input.

4.1 Introduction

In the previous chapter we discussed the use of Haskell for speciications of syn-
chronous digital circuits and the structural interpretation of these descriptions.
his chapter will discuss the CλaSH compiler, whose purpose is to produce a netlist
from the high-level Haskell description. Industry standard tools can then be used
for further processing, such a programming an FPGA or creating an ASIC.

his chapter is split up roughly into two parts, the irst part describes the compiler
pipeline and certain engineering details. he second part provides details about
the synthesis process. he translation from a (functional) description to a netlist
is called synthesis in hardware literature (where it would be called compilation in
sotware literature). he set of rules and transformations that together describe the
conversion procedure from description to netlist is called a synthesis scheme.

he CλaSH compiler uses a term rewrite system (TRS), with bound variables, to
drive the synthesis process. he objective of the TRS is to produce a normal form of
the description which can be trivially converted to a netlist. his chapter provides
proofs that the transformations of the TRS preserve the types and semantics of

Parts of this chapter have been published in [CB:13]

72

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

expressions. Additionally we prove that, given reasonable restrictions, the TRS will
always ind the normal form.

he next subsection gives both a deinition for netlists, and an introduction to
synthesis schemes by describing a speciic instance for a small functional language.
he deinition and introduction are both informal, but hopefully instil an intuition
for the process of transforming a functional description to an actual circuit.

4.1.1 Netlists & Synthesis

A netlist is a textual description of a digital circuit [17]. It lists the components that
a circuit contains, and the connections between these components. he connection
points of a component are called ports, or pins. he ports are annotated with the
bit-width of the values that low through them. A netlist can either be hierarchical
or lattened. In a hierarchical netlist, sub-netlists are abstracted to appear as single
components, of which multiple instances can be created. By instantiating all of
these instances, a lattened netlist can be created.

A synthesis scheme deines the procedure that transforms a (functional) description
to a netlist. Synthesis schemes deined for diferent languages, which nonetheless
have common aspects, will be called a synthesis scheme family. he CλaSH com-
piler uses a synthesis scheme, which we will call TCλ , that is an instance of the
larger synthesis scheme family that will be referred to as T . he following aspects
are shared by all instances of T :

ż It is completely syntax-directed.

ż It creates a hierarchical netlist.

ż Function deinitions are translated to components, where the arguments
of the function become the input ports, and the result is connected to the
output port.

ż Function application is translated to an instance of the component that rep-
resents the corresponding function. he applied arguments are connected
to the input ports of the component instance.

To demonstrate T , a simple functional language, L, is introduced in igure 4.1. L is
a pure, simply-typed, irst-order functional language. A program in L consists of a
set of function deinitions, which always includes themain function. Expressions
in L can be: variable references, primitives, or function application. Figure 4.3
shows a small example program deined in the presented functional language.

he synthesis scheme for L, called TL, is deined by two transformations: J Kp and
J Ke , in which J Kp is initially applied to themain function to create the hierarchical
netlist. A graphical deinition of the J Kp and J Ke transformations is depicted in
igure 4.2. Again, the purpose of this subsection is to give an intuition for the
synthesis process, not to give a formal account of TL. he transformation J Kp
creates a component deinition for a function f , where input ports correspond to

73

4.
1.
1
ś
N
et
li
st
s
&
Sy
n
t
h
es
is

p ::= f x ≙ e; p Function deinitions
∣ main x ≙ e Main function

e ::= x Argument reference
∣ ⊗ e Primitive
∣ f e Function application

Figure 4.1 ś L: a simple functional language

J f x = eKp JeKe

x�

xn⇒

JxKe J⊗ eKe

J f eKe

⇒

⇒

⇒

Je�Ke

JenKe

x
Je�Ke
JenKe

J f Kp

Figure 4.2 ś TL: A synthesis scheme for L

1 double x = x * x
2 main x y = (double x) + (double y)

Figure 4.3 ś Example program in L

the argument of f . Additionally, J Kp creates an output port for the result of the
expression e, which is connected to the outcome of the J Ke transformation applied
to e.

Figure 4.2 shows that J Ke transforms a reference to an argument x, to a connection
with the input port x. Function application of a function f is transformed to an
instantiation of the component f . he J Kp transformation will be called for the
deinition of f in case there is no existing component deinition. Arguments to f
are subsequently transformed by J Ke , and the outcome of these transformations
are connected to the input ports of the component f . he process for the transfor-
mations of primitives is analogous to that of functions, except that J Kp will not be
called for the deinitions.

Applying the synthesis scheme TL to the example program given in igure 4.3 re-
sults in the (graphical representation of the) netlists depicted in igure 4.4. he
netlist representation of main shows that synthesis schemes belonging to T ex-

74

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

double

y
+

double

main

x

double

∗x

Figure 4.4 ś Netlist of the example program in igure 4.3, created by TL

ploit the implicit parallelism present in (pure) functional languages: as there are no
dependencies between the operands of the addition, they are instantiated side-by-
side. During the actual operation of the circuit, electricity lows through all parts
simultaneously, and the instances of double will actually be operating in parallel.

4.2 Compiler pipeline

Now that we have seen an informal introduction to the synthesis of functional lan-
guages, we will move on to some of the engineering details of the CλaSH compiler.
he CλaSH compiler is not a complete rewrite of a Haskell compiler targeted at
doing circuit synthesis. It actually reuses a large part of GHC. he CλaSH compiler
is roughly split into three parts:

Front-end: he front-end of the compiler exists of parsing, type-checking, and
desugaring the Haskell code. For this part of the compiler, CλaSH uses the
GHC API [65]. he GHC API exposes the internals of the GHC compiler
as a library for other projects to use. he output of this stage is not an
abstract syntax tree (AST) of the Haskell code, but an AST of the internal
core language of GHC: System FC [62, 68, 69, 75].

Normalisation: he description in System FC still contain constructs which are
non-trivial to translate to a netlist. he normalisation process uses a term
rewrite system (TRS), as mentioned earlier in the chapter, to transform the
System FC description into a shape where these untranslatable constructs
no longer exists. he inner workings of this TRS are discussed in great detail
in the second part of this chapter. he result of this stage of the compiler is
thus a System FC description in a normal form suitable for a translation to
a netlist.

Netlist generation: When the System FC description has been transformed into
its suitable normal form, it is converted to a generic netlist data type. his
generic netlist data type is currently pretty printed to VHDL, although gen-
eration of Verilog is not precluded.

75

4.
2.
1
ś
Sy
st
em

F
C

Lambda calculus

he lambda calculus is a formal system for expressing computation in terms
of functions. Its grammar for expressions is:

e , u ::= Expressions
∣ x Variable reference
∣ λx .e Abstraction
∣ e u Application

Where the expression λx .e is an anonymous function with an argument
named x, and body e. A computational step is described by beta reduction:

(λx .e) uÔ⇒ e∥u/x∥

Which states that, when there is an application of an abstraction, all occur-
rences of x in e are substituted by the expression u.
he lambda calculus can be expanded to express more properties of an ex-
pression. For example, we can annotate function arguments with a type,
λx ∶ Bool .e, and subsequently check if expressions are correct according to
their types. Continuing this line of reasoning we can start abstracting over
the types of function arguments, Λa.λx ∶a.e, where the function is now poly-
morphic in its argument.

A large part of the compiler, and certainly this thesis, centres around System FC,
so we will irst introduce System FC before moving on with discussing the rest of
the compiler pipeline.

4.2.1 System FC

he syntactically rich Haskell language is desugared to a much smaller language,
called System FC [62], by the GHC API [65]. he actual AST corresponds most to
a combination of the calculi System F↑C [75] and System FC2 [68], extended with
recursive let-expressions. We will, however, present our work in the context of
the latest incarnation of System FC, as described by Weirich et al. [69]. his latest
version generalises the earlier work on System FC. So even though the implementa-
tion of the CλaSH compiler works with an AST corresponding to an older version
of System FC, the proofs and theory as presented in this thesis carry over to the
implementation.

System FC [69] is a Church-style polymorphic lambda-calculus with irst-class
type quality proofs which are called coercions. It supports generalized algebraic
data types (GADTs) [74], and type-level functions (encoded in the Haskell source
language in the form of type families [11, 16]). Novel in the work of Weirich et
al. [69], compared to earlier versions of System FC, is the uniied type and kind

76

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Typing judgements

A typing judgement is a formal statement about the type of an expression. he
most basic form is:

Γ ⊢ e ∶ τ

which expresses: in the context Γ, the expression e, has the type τ. hese
judgements are used in type derivation rules. For example, the following
inference rule:

Γ, x ∶ σ ⊢ e ∶ τ

Γ ⊢ λx ∶ σ .e ∶ σ → τ

states that: if we can derive that e has the type τ in the context Γ, extended
with the variable x of type σ . hen we can derive that e abstracted over x,
λx ∶ σ .e, has the function type σ → τ. Sometimes we add a tag to a judgement,
by subscripting the turnstile (⊢), to indicate that the judgements refers to a
particular set of type derivation rules. For example, the judgement:

Γ ⊢co γ ∶ τ ∼ σ

states that the coercion γ witnesses the equality between types τ and σ . he

co subscript in ⊢co indicates that this is a judgement in the typing derivation
rules for coercions.

(the type of types) hierarchy. We will present a slightly adapted version, where the
expression language is extended with: recursive let-expressions, primitive opera-
tions, and projections. he grammar for this slight variant of System FC is given in
igure 4.5; it uses, like the rest of this chapter, the notation described in igure 4.7.
For space reasons, the grammar for coercions is put in a separate igure, igure 4.6.

Coercions

Coercions are the distinguishing feature of System FC, although they play only a
small role in this thesis. Coercions witness the non-syntactical equality of two types,
that is, the judgement:

Γ ⊢co γ ∶ τ1 ∼ τ2

checks that the coercion γ proves that τ1 and τ2 are equal. Using casts, e ▷ γ, we
can safely coerce the types of expressions:

Γ ⊢tm e ∶ τ1 Γ ⊢co γ ∶ τ1 ∼ τ2

Γ ⊢tm e▷ γ ∶ τ2

So given that the expression e has type τ1, and the coercion γ is a witness of the
equality τ1 ∼ τ2, the type of e▷ γ, is τ2.

77

4.
2.
1
ś
Sy
st
em

F
C

H ∶∶≙ Type constants
∣ (→) Arrow
∣ ⋆ Type/Kind
∣ T Type constructor
∣ K Promoted data constructor

w ∶∶≙ Type-level names
∣ a Type variables
∣ F Type functions
∣ H Type constants

σ , τ, κ ∶∶≙ Types and Kinds
∣ w Names
∣ ∀a ∶ κ.τ Polymorphic types
∣ ∀c ∶ ϕ.τ Coercion abstr. type
∣ τ1 τ2 Type/kind application
∣ τ▷ γ Casting
∣ τ γ Coercion application

ϕ ∶∶≙ σ ∼ τ Propositions (coercion kinds)

e , u ∶∶≙ Expressions
∣ x Variables
∣ λx ∶ τ.e Abstraction
∣ e1 e2 Application
∣ Λa ∶ κ.e Type/kind abstraction
∣ e τ Type/kind application
∣ λc ∶ ϕ.e Coercion abstraction
∣ e γ Coercion application
∣ e▷ γ Casting
∣ K Data constructors
∣ case e of p → u Case decomposition
∣ let x ∶ σ ≙ e in u Recursion let-expression
∣ ⊗ Primitive operation
∣ πk

i e Constructor ield projection

p ∶∶≙ Patterns
∣ K ∆ x ∶ τ Constructor pattern
∣ _ Default pattern

∆ ∶∶≙ Telescopes
∣ ∅ Empty
∣ ∆, a ∶ κ Type variable binding
∣ ∆, c ∶ ϕ Coercions variable binding

Figure 4.5 ś System FC grammar

78

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

γ, η ∶∶≙ Coercions
∣ c Variables
∣ C ρ Axiom application
∣ ⟨τ⟩ Relexivity
∣ sym γ Symmetry
∣ γ1 o

9 γ2 Transitivity
∣ ∀η(a1 , a2 , c).γ Type/kind abstraction congruence
∣ ∀(η1 ,η2)(c1 , c2).γ Coercion abstraction congruence
∣ γ1 γ2 Type/kind application congruence
∣ γ(γ2 , γ

′
2) Coercion application congruence

∣ γ▷ γ′ Coherence
∣ γ@γ′ Type/kind instantiation
∣ γ@(γ1 , γ2) Coercion instantiation
∣ nthi γ nth argument projection
∣ kind γ Kind equality extraction

ρ ∶∶≙ τ ∣ γ Type or coercion

Figure 4.6 ś System FC coercion grammar

w σ ≡ w σ1 .. σn e u ≡ e u1 .. un

τ → σ ≡ (→) τ σ λx ∶ σ .e ≡ λx1 ∶ σ1 . .. λxn ∶ σn .e
τ → σ ≡ τ1 → .. → τn → σ x ∶ σ ≙ e ≡ {x1 ∶ σ1 ≙ e1 , .. , xn ∶ σn ≙ en}
∀a ∶ κ.σ ≡ ∀a1 ∶ κ1 . .. ∀an ∶ κn .σ p → u ≡ {p1 → u1 , .. , pn → un}

Figure 4.7 ś Notation

As stated earlier, System FC supports type level functions, through the use of co-
ercion axioms. Copying the example from Weirich et al. [69], the following type
family declaration in Haskell:

1 type family F a :: *
2 type instance F Bool = Int

declares a type function called F, which has a single argument. And it subsequently
declares that, when this type argument is Bool, then the result of the type function
is Int. his in turn gives rise to the following axiom in System FC:

axF : F Bool ∼ Int

79

4.
2.
1
ś
Sy
st
em

F
C

which states that the axiom axF is a witness to the equality between the type func-
tion F applied to Bool, and the data type Int. So, given a Haskell function that has
the type:

f :: a → F a → Char

the Haskell expression, f True 3, is desugared to the System FC expression:

f Bool True (3 ▷sym axF)

Where the literal 3, which has type Int, is coerced to type, F Bool, using, sym axF, as
the witness. he symmetry coercion constructor, sym, creates, as its name suggests,
a witness for the equality symmetric to the equality witnessed by its argument:

Γ ⊢co axF ∶ F Bool ∼ Int

Γ ⊢co sym axF ∶ Int ∼ F Bool

Having a consistent set of axioms is paramount for soundness of the type system,
as we do not want to be able to build coercions that witness bogus equalities such
as Bool ∼ Int. We refer the reader to [62] for further discussion on consistency of
the axiom set.

GADTs

GADT are also encoded with coercions, where pattern matching on constructors
binds coercion variables, which facilitate type assumptions in the context of the
matched pattern. For example, the following Haskell code:

1 data DT a where
2 MkI :: Int → DT Int
3 MkB :: Bool → DT Bool
4

5 f :: a → DT a → a
6 f i (MkI j) = i + j
7 f a (MkB b) = a && b

gives rise to the following System FC code:

1 MkI : ∀ a :*. ∀ c :a~Int → Int → DT a
2 MkB : ∀ a :*. ∀ c :a~Bool → Bool → DT a
3

4 f = Λa :*.λx:a .λds :DT a.case ds of
5 MkI (cv :a~Int) (j : Int) → ((x ▷cv) + j) ▷sym cv
6 MkB (cv:a~Bool) (b :Bool) → ((x ▷cv) && b)▷sym cv

where the data type constructors, MkI and MkB, both have three arguments: a
type variable (corresponding to the type parameter of the type constructor T), a

80

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

coercion variable, and an argument for the ield. his coercion argument will carry
a witness that the type variable a is actually equal to either Int or Bool.

When we pattern match on the constructor MkI, we can safely assume that the
argument x, of type a, is actually of type Int. We thus coerce x to be of type Int
using a cast, so that it can be safely applied to (+ ∶ Int → Int → Int), together with
the ield j. he result is subsequently coerced to type a by, sym cv ∶ Int ∼ a.

In general, and this is checked by a well-formedness judgement on the context
(appendix C), type constructors T , are of kind:

T ∶ ∀a ∶ κ.⋆.

he parameters of the type can only be type and kind variables, but not coercion
variables. Data constructors K, in general, are of type:

K ∶ ∀a ∶ κ.∀∆.σ → T a.

Where the list of type arguments, a ∶ κ, matches and saturates the parameters a
of the type constructor T . Next follows a telescope, of the form ∀∆.τ, which is a
list of nested quantiied types (see igure 4.5 for the grammar of telescopes). Every
variable bound in the telescope scopes over the remainder of the telescope, and
the quantiied type, in the above case σ → T a. he telescope corresponds to the
existential arguments of a data constructor, and contains both type and coercion
arguments. For example, the Haskell datatype declaration:

1 data Vec :: Nat → * → * where
2 Nil :: Vec 0 a
3 Cons :: a → Vec n a → Vec (n+1) a

gives rise to the System FC constructors:

1 Nil : ∀ n :Nat.∀ a :*. ∀ c :n~0→ Vec n a
2 Cons : ∀ n :Nat.∀ a :*. ∀ n1:Nat.∀ c :n~n1+1.a→ Vec n1 a → Vec n a

where, for the Cons constructor, n :Nat and a :* correspond to the parameters of
the type constructor, and ∀ n1:Nat.∀ c :n~n1+1 is the telescope, the existential
arguments of the constructor.

Extensions

We extend the presentation of System FC in Weirich et al [69] by: default patterns,
recursive let-expressions, primitives, and projections. Case-decompositions in Sys-
tem FC are only well-formed when their alternatives are exhaustive in the possible
constructors of the subject. By including the default pattern, being exhaustive no

81

4.
2.
1
ś
Sy
st
em

F
C

Γ ⊢tm e ∶ τ Expression typing

T_Case
Γ ⊢tm e ∶ T τ′ Γ ⊢alt p i → u i ∶ T τ′ → τ

Γ ⊢tm case e of p → u ∶ τ

T_LetRec
Γ, x ∶ σ ⊢bind x i ∶ σi ← e i Γ, x ∶ σ ⊢tm u ∶ τ

Γ ⊢tm let x ∶ σ ≙ e in u ∶ τ

T_Prim
⊢wf Γ ⊗ ∶ τ ∈ Γ

Γ ⊢tm ⊗ ∶ τ

T_Proj
Γ ⊢tm e ∶ T τ′ Γ ⊢alt Kk ∆ x ∶ τ′ → x i ∶ T τ′ → τ

Γ ⊢tm πk
i e ∶ τ

Γ ⊢alt p → e ∶ σ → τ Alternative typing

T_AltDef

Γ ⊢tm e ∶ τ Γ ⊢ty τ ∶ ⋆ Γ ⊢ty σ ∶ ⋆

Γ ⊢alt _→ e ∶ σ → τ

T_AltCon

Γ ⊢ty τ ∶ ⋆
K ∶ ∀a ∶ κ.∀∆.σ → (Ta) ∈ Γ

∆′ ≙ ∆∥τ′/a∥

σ ′ ≙ σ∥τ′/a∥
Γ, ∆′ , x ∶ σ ′ ⊢tm u ∶ τ

Γ ⊢alt K ∆′ x ∶ σ ′ → u ∶ T τ′ → τ

Γ ⊢bind x ∶ σ ← e Binding typing

T_Bind
Γ ⊢tm e ∶ σ

Γ ⊢bind x ∶ σ ← e

Figure 4.8 ś Extended typing rules for System FC

longer entails enumerating all the constructor patterns. he default pattern is only
chosen when none of the constructor patterns can be matched.

Let-expressions introduce local recursion, and, in the context of this thesis, are
mainly used to model feedback loops. We note that the let-binders are also allowed
to form a non-recursive binding group.

here are certain operations that are primitive to the system, such as addition of
integers. Primitives are well-formed when they are monomorphic, and only have
data types (T in the grammar given by igure 4.5) as arguments and result.

82

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

he projection construct, πk
i e, projects (or extracts) the i’th ield of the k’th con-

structor of a data type T , from the expression e. his construct is not introduced by
the desugaring process fromHaskell to SystemFC. It is created by the normalisation
process where it is (type-)safe to do. When the data type has only one constructor
we omit the k annotation, and just write π i .

We present the typing rules for these extensions in igure 4.8 and the operational
semantics for the extensions in igures 4.9, 4.10, and 4.11. For an overview of all the
typing rules and operational semantics we refer the reader to appendix C. Most of
the typing rules are straightforward.

In the typing rule for primitives, T_Prim, we perform a well-formedness check to
ensure that the primitive is monomorphic and only has data types (T) as arguments
and result. Type checking for alternatives has now moved to two separate judge-
ments, of the form Γ ⊢alt p → e ∶ σ → τ, one for the default pattern (T_AltDef)
and one for constructor patterns (T_AltCon). We refer the reader to [69] for the
workings of the typing judgement for constructor patterns. he type rule for projec-
tion, T_Proj, uses the typing judgement for constructor pattern alternatives, where
the matched constructor is the kth constructor of the data type, and the expression
is a variable reference to the ith ield of the constructor.

heT_LetRec rule is the typing-rule for recursive let-expressions. In the premise it
says that every binding i, x i ∶ σi ≙ e i , is checked in the context of the environment,
Γ, and all let-bound variables, x ∶ σ , are checked using the bind typing rule ⊢bind.
he typing rule for bindings says that, if the expression e has the type σ , then e
bound to the variable x with type σ is a valid binding.

On to the operational semantics. To support recursion of let-expressions, we use
an extra context Σlet that keeps track of the bindings in the recursive group. his
extra context does not inluence the proof of the type preservation theorem (theo-
rem C.4.1) for the existing typing rules and operational semantics as presented in
[69]. he rule S_LetRec, takes a step on the body of the let-expressions, with the
bindings in scope of the extra context Σlet, and the result is the let-expression with
the one-step reduced body.

he progress theorem roughly states that if an expression is not a value, always one
of the step-reduction rules applies so that an evaluator for expressions can make
progress. Values, and their types, value types, are deined by the grammar:

v ::= λx ∶ σ .e ∣ Λa ∶ κ.e ∣ λc ∶ ϕ.e ∣ K τ ρ e ∣ ⊗ v
ξ ::= σ1 → σ2 ∣ ∀a ∶ κ.σ ∣ ∀c ∶ ϕ.σ ∣ T σ

Compared to [69], we have extended our values with unsaturated primitives, ⊗ v.
And, as we can see by the v, the arguments of a primitive are reduced to values,
meaning that primitives are strict in all of their arguments. We also update the
canonical forms lemma, lemma 4.2.1.

83

4.
2.
1
ś
Sy
st
em

F
C

Σlet; e Ð→ e′ Step reduction

Σlet ∶∶≙ ∅ ∣ Σlet , x ↦ e

S_CaseDef
_→ u i ∈ p → u No other matches

Σlet;case K i τ ρ e of p → u Ð→ u i

S_Var

Σlet(x) ≙ e

Σlet; x Ð→ e

S_LetRec
Σlet , x ↦ e; u Ð→ u′

Σlet; let x ∶ σ ≙ e in u Ð→ let x ∶ σ ≙ e in u′

S_LetApp

Σlet; (let x ∶ σ ≙ e in u) e′ Ð→ let x ∶ σ ≙ e in (u e′)

S_LetTApp

Σlet; (let x ∶ σ ≙ e in u) τ Ð→ let x ∶ σ ≙ e in (u τ)

S_LetCApp

Σlet; (let x ∶ σ ≙ e in u) γ Ð→ let x ∶ σ ≙ e in (u γ)

S_LetCast

Σlet; (let x ∶ σ ≙ e in u)▷ γ Ð→ let x ∶ σ ≙ e in (u▷ γ)

S_LetFlat

Σlet; let x ∶ σ ≙ e in (let x′ ∶ σ ′ ≙ e′ in u)Ð→
let x ∶ σ ≙ e , x′ ∶ σ ′ ≙ e′ in u

S_LetCase

Σlet;case (let x ∶ σ ≙ e in u) of p → u′ Ð→
let x ∶ σ ≙ e in (case u of p → u′)

Figure 4.9 ś Operational semantics of System FC, default patterns and let-expression

Lemma: 4.2.1 (Canonical forms). Say Σ ⊢tm v ∶ σ , where Σ is a closed context
and v is a value. hen σ is a value type. Furthermore,

1. If σ ≙ σ1 → σ2 then v is λx ∶ σ1 .e or K τ ρ e or ⊗ v.

2. If σ ≙ ∀a ∶ κ.σ ′ then v is Λx ∶ κ.e or K τ ρ e.

3. If σ ≙ ∀c ∶ ϕ.σ ′ then v is λc ∶ τ1 ∼ τ2 .e or K τ ρ e.

4. If σ ≙ T τ then v is K τ ρ e or ⊗ v.

Because we can construct co-inductive data types using our recursive let-expres-
sions, it might be the case that the body of a let-expression does not reduce to a
closed value, even though the expression is closed. he following example:

1 IntStream : *
2 SCons : Int → IntStream → IntStream
3

4 let f = SCons 1
5 r = f r
6 in r

84

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Σlet; e Ð→ e′ Step reduction

Σlet ∶∶≙ ∅ ∣ Σst , x ↦ e

S_PrimLet
Σlet;⊗ (let x ∶ σ ≙ e in u) Ð→ let x ∶ σ ≙ e in (⊗ u)

S_PrimCast

Γ ⊢co γ ∶ T ∼ T

Σlet;⊗ v (v′▷ γ)Ð→ ⊗ v v′
S_Prim

Σlet; e Ð→ e′

Σst;⊗ e Ð→ ⊗ e′

S_PrimDelta
⊗ v Ð→δ v′

Σst;⊗ v Ð→ v′

Figure 4.10 ś Operational semantics of System FC, primitives

will reduce to:

1 IStream : *
2 SCons : Int → IStream → IStream
3

4 let f = SCons 1
5 r = f r
6 in Cons 1 r

where the body of the let-expression is indeed a value, a fully applied constructor,
but it is not closed. We therefore rephrase the progress theorem as theorem 4.2.1.

heorem: 4.2.1 (Progress). Assume a closed¹, consistent, context Γ. If Γ ⊢tm e1 ∶ τ
and e1 is not a value v, a coerced value v ▷ γ, or a let-abstracted version of either,
then there exists an e2 such that Σlet; e1 Ð→ e2.

As for the details behind the step reduction rules themselves, we want to note
that most are quite straightforward. he rules for let-expressions are such that
when the body of a let-expressions is a value, the application with either a term,
type, or coercion can be moved inwards for further reduction. In case the let-
expression is the subject of a cast, then the cast can be moved inwards by S_-
LetCast. he S_LetFlat rule merges a nested let-expression into a single let-
expression. Finally, when the let-expression is the subject of a case-decomposition,
then the let-bindings are moved outwards by S_LetCase.

he step reduction rules for primitives are such that the arguments of a primitive
application become a value. Also, as we can see in the rule S_Prim, primitives are
strict in all their arguments. Finally, the S_PrimDelta performs a δ-reduction
step on a, primitive applied to all values, to compute a new value. For example,
+# 3 4Ð→δ 7.

1A context is closed if it does not contain any expression variable bindings.

85

4.
2.
1
ś
Sy
st
em

F
C

Σst; e Ð→ e′ Step reduction

Σst ∶∶≙ ∅ ∣ Σst , x ↦ e

S_Proj
Σlet; e Ð→ e′

Σlet; π
k
i e Ð→ πk

i e
′

S_ProjKPush

K ∶ ∀a ∶ κ.∀∆.σ → (T a) ∈ Σ
Ψ ≙ extend(context(γ); ρ;∆)
τ′ ≙ Ψ2(a)
ρ′ ≙ Ψ2(dom ∆)

for each e i ∈ e
e′i ≙ e i ▷Ψ(σi)

Σst; πk
i (K τ ρ e▷ γ) Ð→ πk

i (K τ′ ρ′ e′)

S_ProjLet

Σlet; πk
i (let x ∶ σ ≙ e in u) Ð→ let x ∶ σ ≙ e in (πk

i u)

S_ProjMatch
Kk ∆k x ∶ σ → x i

Σlet; πk
i (Kk τ ρ e) Ð→ e i∥ρ/∆k∥

Figure 4.11 ś Operational semantics of System FC, projection

Finally, the step reduction rules for projections match those of normal case-de-
composition. Projections are only introduced by the normalisation process where
the subject of the projection is guaranteed to reduce to the correct constructor.
he most involved rule of the step-reduction rules for projections is S_ProjKPush,
which is nearly a one-to-one copy of the S_KPush rule. he purpose of the S_Pro-
jKPush rule is to push the cast through the data constructor application, so that the
S_ProjMatch rule can subsequently be applied. Wewill explain the S_ProjKPush
rule using the example in listing 4.1.

At the top of listing 4.1 we see the Haskell deinitions for the type family F and
datatype DT. he declaration of f is not really Haskell, as the projection construct
does not exist in Haskell, it is there mainly for demonstrative purposes. In the
middle of listing 4.1 we see the equivalent System FC axioms, and the expression
f before the S_ProjKPush rule. At the bottom of listing 4.1 we see the expression
f ater the S_ProjKPush rule. he S_ProjKPush is as complex as it is, because it
must apply many rewrites, and create new coercions, in order to be type preserving.
he coercion around theMk data constructor witnesses the equality:

⟨DT⟩ (sym axFChar) ∶ DT Int ∼ DT (F Char)

So in order to push this coercion down, we must cast the data constructor ield,

86

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Haskell

1 type family F Int = Bool
2 type family F Char = Int
3

4 data DT a where
5 Mk :: F a → DT a
6

7 f :: F (F Char)
8 f = π1 ((MkDT True :: DT Int) :: DT (F Char))

System FC, Before S_ProjPush

1 axFInt : F Int ~ Bool
2 axFChar : F Char ~ Int
3 Mk : ∀ a .F a → DT a
4

5 f = π1 ((Mk Int (True ▷sym axFInt)) ▷(⟨DT⟩ (sym axFChar)))

System FC, Ater S_ProjPush

1 f = π1 (Mk (F Char) ((True ▷sym axFInt) ▷(⟨F⟩ nth1(⟨DT⟩ (sym axFChar)))))

Listing 4.1 ś S_ProjKPush Example

which before S_ProjKPush has type:

Γ ⊢tm True ∶ Bool Γ ⊢co sym axFInt ∶ Bool ∼ F Int

Γ ⊢tm True▷ sym axFInt ∶ F Int

to be of type, F (F Char), ater the application of S_ProjKPush. To do this, we
create the coercion:

Γ ⊢co ⟨F⟩ ∶ F ∼ F Γ ⊢co nth
1
(⟨DT⟩ (sym axFChar)) ∶ Int ∼ F (Char)

Γ ⊢co ⟨F⟩ nth
1
(⟨DT⟩ (sym axFChar)) ∶ F Int ∼ F (F Char)

he operation that performs all transformations is called the liting operation, Ψ(⋅).
he liting operation uses the liting context Ψ to know which rewrites it should per-
form and how new coercions should be created. Elaboration of the liting context,
the liting operation, and the functions: extend, and context, that are needed to
build the liting context, fall outside the scope of this thesis. We refer the reader to
section 5 of [69] for a complete explanation of these concepts.

A complete overview of the typing rules and operational semantics can be found in
appendix C, accompanied with the proofs for type preservation and progress. We
now move on to discussing the remainder of the compiler pipeline.

87

4.
2.
2
ś
N
o
r
m
a
l
fo

r
m

Representable types
τr ::= Tr τr Representable data types

∣ (F τ)r Representable type function result

Representable expressions

t ::= λ(x ∶ τr).let y ∶ τr ≙ r
+
in y j Top-level function

r ::= x Local variable reference

∣ f x Saturated top-level function

∣ K τr ∅ x Saturated data constructor

∣ ⊗ x Saturated primitive

∣ case x of p → y Case decomposition

∣ πk
i x Projection

Patterns
p ::= _ Default case

∣ K ∅ _ Matches data constructor

Figure 4.12 ś System FC in Normal Form

4.2.2 Normal form

As pointed out in chapter 3, we view Haskell descriptions, operationally, as a struc-
tural composition of (sub-)circuits. Partly as a bi-implication² to this structural
view, the CλaSH compiler uses a member of the T family of synthesis schemes,
which we will call TCλ . An important aspect of T is that the arguments and re-
sults of functions become the input and output ports of components. hese ports
are annotated with a bit-width so that it is known how many wires are needed to
make connections between ports. Because System FC is a polymorphic, higher-
order language, the arguments and results of functions can contain polymorphic
or function-typed values. It is generally impossible or impractical to represent such
values by a ixed number of bits. In order to run TCλ , all values that cannot be
represented by a ixed bit-width, will have to be eliminated from the functional
description.

he second stage ofCλaSH’s compilation chain, normalisation, transforms a System
FC description into a normal form which is trivially convertible to a netlist. One of
the most important aspects of this normal from is that it is completely monomor-
phic, and irst-order. he grammar of the normal form is shown in igure 4.12,
where all top-level functions are of the from described by the non-terminal t.

When looking at top-level functions accepted by the non-terminal t we can see
how deriving a netlist from our normal-form is trivial:

2A structural view implies using a variant on T (sans the syntax-directed aspect) for synthesis,
using T as a synthesis scheme implies having a structural view.

88

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

ż he initial term-abstractions deine the input ports of the component.

ż he variable reference in the body of the (recursive) let-expression is the
output port of the component.

ż he let-binders, of which there should be at least one, describe the compo-
sition of the subcomponents, where:

ś A variable reference refers to either, one of the input ports of the com-
ponent, or the output of one of the other sub-expressions.

ś A saturated top-level function leads to the instantiation of the corre-
sponding component, where the input ports are mapped to the wires
corresponding to the local variables, and the output port is mapped
to the let-bound variable.

ś he other constructs, constructor application, primitive application,
case-decomposition, and projection, will have hard-coded translations
to netlist primitives.

he normal form comes with additional side-conditions, some syntactic, some
semantic. As indicated by the overline with a + superscript, the top-level let-expres-
sion should contain at least one let-binding. he variable reference in the body of
the let-expressions refers to one of the let-bound variables. he expressions are also
completely in administrative normal form (ANF), which for case-decompositions
means that both the subject, and the expressions in the alternatives, are references
to either lamba- or let-bound variables. At the moment, data types with existential
arguments are not considered representable. here are hence no data constructors
with existential arguments in our normal form, nor patterns which bind existential
variables. his is indicated in the grammar with the ∅ mark. he alternatives of
case-decompositions do explicitly not refer to pattern-bound variables. his aspect
of the normal form is highlighted by marking pattern variables as wild, using _,
in the grammar for patterns. Wild means that a binder is not referenced in an
expression.

Also note that all bound variables must have representable type τt , which is either
a representable data type T τ, or a type function which, transitively, has a represen-
table data type T τ as a result. By representable we mean that it should be trivial
to encode the values of the type with a ixed number of bits, and for those reasons
excludes: polymorphic types, function types, and most recursive data types.

4.2.3 From normalised System FC to a netlist

Figure 4.13 depicts the inal phase of our TCλ synthesis scheme, the conversion
from System FC in its normal form to a netlist. As we did for TL, we use graphi-
cal, schematic, representations for the transformations from System FC to a netlist.
here are two transformations: J Kt and J Kr , each referring to one of the non-termi-
nals for expressions in our grammar of the System FC normal form (igure 4.12).

a) he transformation for top-level functions, J Kt , creates a new component, that:

89

4.
2.
3
ś
Fr

o
m
n
o
r
m
a
li
se
d
Sy
st
em

F
C
to

a
n
et
li
st

Jλ(x ∶ τr).let y ∶ τr = r
+

in y jKt

Jr�Krx�

xn

⇒

JxKr

J⊗ xKr

J f xKr

⇒

⇒

⇒

x

J f Kt

Jr iKr

JrnKr

y�

y i

yn

y j

xn

JK τr � xKr ⇒

�K�

x�

Jcase x of p → yKr ⇒
y�

yn

Jπk

i
xKr ⇒

�τr �
�τ′r �

x

enc

�log�(n)��K�
x

xn

x�

�τ′r �

x�

x�

Vcc

a)

b)

c)

d)

e)

f)

g)

Legend:

� = Combine wire bundles

� = Split wire bundles
�K� = Bit-width of the constructor K
�τ� = Bit-width for values of type τ

Figure 4.13 ś From System FC in normal form to a netlist

90

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

ż Has an input port for every lambda-bound variable.
ż Instantiates all let-bound expressions side-by-side, using the J Kr trans-
formation for every expressions, and connects their results to anchor
points corresponding to the let-bound variable. Variable references
can now be synthesized to either connections to these anchor points,
or to connections to the input ports.

ż Has an output port which is connected to one of the anchor points
corresponding to the variable reference y j .

b) As already hinted to earlier, variable references are transformed to connections
to either anchor points or input ports by the JxKr transformation.

c) Saturated function applications are turned into component instantiations by
J f xKr , where the component deinition is the result of the J Kt transforma-
tion applied to the expression referenced by f .

d) Saturated constructors are transformed by JK τr ∅ xKr into:

ż A bundle of wires, of width ∣K∣, encoding the constructor K. For sum
types, ∣K∣ is equal to ⌈log2(N)⌉, whereN is the number of constructors
of the sum-type. For product types, the width of the bundle would be
zero, and the constructor would hence not be encoded.

ż Every argument, in the form of a variable references, is transformed
into a wire connecting to either an anchor point or input port.

ż Given that a let-binding, y ∶ τ′r ≙ K τr ∅ x, has type τ′r , ∣τ
′
r ∣ denotes the

number of bits required to encode values of type τ′. So when the wires
for the constructor and for the individual ields are inally bundled
together, extra wires (connected to logic 0) are added for padding to
form a bundle of width ∣τ′r ∣.

e) Primitives have their custom transformation logic.

f) he Jcase x of p → yKr transformation turns case-decompositions into multi-
plexers. In general, the variable references y become the inputs in syntactic
order of the alternatives, which are subsequently connected to the referenced
anchor points or input ports. he variable reference in the subject becomes
the select line of the multiplexer, and is also connected to the referenced an-
chor point or input port. When the case-decomposition is complete³ in the
constructor patterns, the alternatives are reordered tomatch the constructor
declarations of the data type. hat is, given the data type deinition:

1 data T = A | B

And the following case-decomposition in normal form:

1 case x of
2 B → y1
3 A → y2

3Given that a data type has N constructors, a case-decomposition is considered complete when
N − 1 constructors are matched and the N th alternative is the default alternative.

91

4.
2.
3
ś
Fr

o
m
n
o
r
m
a
li
se
d
Sy
st
em

F
C
to

a
n
et
li
st

he alternatives are irst rearranged to:

1 case x of
2 A → y2
3 B → y1

When the case-decomposition is not exhaustive in constructor patterns, the
alternatives are let in their original order, and the subject is encoded to
match the order of the alternatives. hat is, given the data type deinition:

1 data T = A | B | C | D | E

And the following case-decomposition in normal form:

1 case x of
2 D→ y1
3 B → y2
4 _ → y3

he case-decomposition will be irst transformed to:

1 case encode x of
2 0 → y1
3 1 → y2
4 _ → y3

Where encode has the behaviour speciied by the following truth table4:

x2 x1 x0 o1 o0

0 0 0 1 -

0 0 1 0 1

0 1 0 1 -

0 1 1 0 0

1 0 0 1 -

1 0 1 - -

1 1 0 - -

1 1 1 - -

For which the corresponding logic can be derived using standard synthesis
techniques [10], which in the above case would lead to: o1 ≙ ¬x0 and o0 ≙
¬x1.

g) Projection is translated, using Jπk
i xKr , to splitting of the wires representing the

ith ield of the kth constructor from the bundle of wires connected to the
anchor point or input port referenced by x. he other wires are let loating.
For example, given that the variable x is of type:

4he ‘-’ denotes a don’t care value.

92

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

1 data T
2 = K1 (Signed 8) Bool Bool
3 | K2 Bool (Signed 8)

he projection, π2
2 x, is transformed to:

[�� ∶ �]
[� ∶ �]

x

Synthesis example

Listing 4.2 demonstrates a small example where we see:

ż A Haskell program.

ż he corresponding System FC expression.

ż he System FC expression in its normalized form.

hen at the top of listing 4.3 we see the very mechanical translation of the nor-
malised System FC expression to a netlist, where right below that we see the same
netlist with a more pleasing and more understandable layout.

heHaskell code startswith the data type declaration forBool, whereFalse is the irst
constructor, and True is the second. In the normalised System FC code we see that
the irst pattern in the case-decomposition is the True pattern. hen in the netlist
diagramwe see, in accordance to the rules of the Jcase x of p → yKr transformation,
that alternatives are switched with to respect the order of constructors in the data
type declaration.

In the beginning of this section we discussed System FC, elaborated on the oper-
ational semantics of the extensions. We will now move on to the presentation of
the normalisation phase of the CλaSH compiler, and leave the discussion why the
derived netlist faithfully corresponds to the operational semantics to section 4.4.

93

4.
2.
3
ś
Fr

o
m
n
o
r
m
a
li
se
d
Sy
st
em

F
C
to

a
n
et
li
st

Haskell

1 data Bool = False | True
2

3 f :: Bool → (Int8 , Int8) → Int8
4 f x (a ,b) = if x then y + 2 else y * 2

5 where

6 y = a * b

System FC

7 f = λ(x :Bool) . λ(ds : Int8 , Int8) . case ds of

8 (a : Int8 ,b : Int8) → let y : Int8 = a * b
9 in case x of

10 True → y + 2

11 False → y * 2

Normalized System FC

1 f = λ(x :Bool) . λ(ds :(Int8 , Int8)) .
2 let a : Int8 = π1ds
3 b : Int8 = π2ds
4 y : Int8 = a * b
5 t : Int8 = 2

6 p : Int8 = y + t
7 q : Int8 = y * t
8 z : Int8 = case x of

9 True → p
10 False → q
11 in z

Listing 4.2 ś Synthesis example: from Haskell to normalized System FC

94

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Derived netlist (mechanical translation)

+

∗

a

bx

y

z

[��:�]

[�:�]

ds

p

q

f

�

�

∗

2
t

[�:�]Vcc

[�� ∶ �]

Derived netlist (lattened)

+

∗

x

[��:�]

[�:�]

ds

f

�

�

∗

2

[�:�]
Vcc

[�� ∶ �] [�:�]

Listing 4.3 ś Synthesis example: from normalized System FC to a netlist

95

4.
3
ś
N
o
r
m
a
li
sa
t
io
n

4.3 Normalisation

he normalisation phase of the CλaSH compiler converts System FC expressions
as they are produced by the front-end to expressions in the normal form described
in section 4.2.2. he normalisation phase operates in two passes:

ż he irst pass eliminates, in a meaning preserving manner, all bound vari-
ables which cannot trivially be given a ixed bit-encoding.

ż he second pass further simpliies the expression to facilitate the trivial
translation to a netlist as described in section 4.2.3.

Given the closed global environment Γ, the set of normalized bindings Γn , and a
binding (x , e), we apply the two passes of the normalization phase on e, to create
the normalized expression en and the new environment Γ′. We add the binding
(x , en) to the set of normalized bindings Γn to create Γ′n . We then calculate the free
variable in en , which are references to global binders in the environment Γ′. We
then continue normalisation for each of the referenced global binders that are not
in Γ′n . We get the complete closed environment of normalized binders by taking
the ixed point of the above process, starting with the closed set of global binders
created by the front-end, an empty set of normalized binders, and the binding
corresponding to the entry point of the program,main.

Deinition 4.1 (Closed environment). A closed environment is a set of binders where
the diference between, the set of free variables of the bound expressions, and the
binders in the environment, is the empty set.

Deinition 4.2 (Normalized environment). A normalized environment is a closed
environment where all bound expressions are in the normal form given by the gram-
mar in igure 4.12.

Both passes of the normalisation phase are implemented as a term rewrite system
(TRS), although perhaps not a TRS in its most traditional sense, as we will see
below. he rewrite rules in this chapter are presented using the format depicted in
igure 4.14.

In all of these rewrite rules, the expression above the horizontal bar is the expression
that has to be matched before performing the rewrite rule, and the expression
below the horizontal bar is the result ater applying the rewrite rule. Some rewrite

Name of the Rewrite Rule

Matched Expression ⟨Additional Preconditions⟩

Resulting Expresson ⟨Additional Deinitions⟩
⟨Updated Environment⟩

Figure 4.14 ś Format for Rewrite Rules

96

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

α-equivalence and capture-avoiding substitution

Two expressions are α-equivalent when their only diference is the renaming
of bound variables. So the expression, λx .y x, is α-equivalent to, λz.y z.

A capture-avoiding substitution e∥u/x∥, is a substitution of the variable x by
the expression u, in the expression e, in such a way that free variables in u
do not get bound by binders in e. If a substitution does not avoid capture of
free variables, then e.g., (λx .y)∥x/y∥ turns the constant function λx .y into
the identify function λx .x. A capture-avoiding substitution could for example
rename the bound variables in e that occur free in u. A capture-avoiding sub-
stitution would thus turn, (λx .y)∥x/y∥, into, λz.y, which is an α-equivalent
constant function.

rules have additional preconditions, and the rewrite is only applied when these
preconditions hold. Other rewrite rules have additional deinitions which they
use in the resulting expressions. All rewrite rules always have access to the global
environment, Γ, which holds all top-level binders. here are some rewrite rules
that create new top-level binders, and therefore update the global environment.

he rewrite rules have access to the following functions:

fv e Calculates the free variables; works for types and terms.
e∥u/x∥ A capture-avoiding substitution of a variable reference x, by the

expression, type, or coercion u, in the expression e.
Γ@f he expression belonging to a global binder f in the

environment Γ.
NONREP τ Determine if the type τ is a non-representable type.
TYPEOF e Determine the type of the expression e

Before the TRS starts, all variables are made unique, and all variable references
are updated accordingly. Any new variables introduced by the rewrite rules will
be unique by construction. Having hygienic expressions prevents accidental free-
variable capture, and makes it easier to deine meaning-preserving rewrite rules.

Deinition 4.3 (Global function). Given a environment Γ, a global function is a
variable reference to one of the binders in Γ.

Deinition 4.4 (Function hierarchy). Given a closed environment Γ, a directed graph
G with variables as nodes, and a binding (x,e). Let ys be the free variables in e, and
ch = [(x,y) | y ← ys] be new edges in the graph. Let ys’ be the subset of ys that are
not nodes in G, and es the bindings in Γ corresponding to ys’. Let G’ be the graph G,
extended with nodes ys’, edges ch. Let G+ be the graph G’ extended by the nodes and
edges by applying the same process on Γ, G’, and bindings es. he function hierarchy

97

4.
3.
1
ś
E
li
m
in
at

in
g
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

es

is the graph G∗ created by taking the ixed point of the above process starting with an
empty graph and the binding corresponding to the entry point of the program,main.

Aside from needing the obvious property that the normalisation phase should
preserve the meaning of expressions, there are two additional properties that we
wish our normalisation phase to respect as much as possible:

ż It should keep the original function hierarchy intact where possible, because
the netlist hierarchy will follow the function hierarchy under TCλ . Leaving
the function hierarchy intact will make it easier to relate the non-functional
properties of the netlist, such as area and propagation delay, back to the
original function. If desired, it is always possible to latten parts of the
hierarchy later on, going in the other direction is non-trivial.

ż Sharing should be preserved where possible. As seen in listing 4.2, synthe-
sized circuits can also share the result of a computation by connecting the
output port of one component to input ports of multiple other components.
Any loss in sharing, will most likely lead to a duplication of component
instantiations, and under TCλ ultimately lead to a larger circuit.

4.3.1 Eliminating non-representable values

TCλ can only synthesize functional descriptions if function arguments, let-bind-
ings, and pattern-bound variables can be given a ixed bit-encoding. here are
straightforward encodings for certain primitive data types, and certain algebraic
data types, as we have seen in chapter 3. Data types with a ixed bit-encoding are
called representable. Deriving a ixed bit-encoding for the following types is either
not desired, or not possible:

ż Function types.

ż (Higher-rank) polymorphic types.

ż Data types with existential arguments, and consequently, all GADTs.

ż Recursively deined data types.

ż Data types that are composed of types that are not representable.

his section shows that the TRS responsible for the irst pass of the normalisation
pass, the removal of non-representable values. It eliminates such values completely,
given that the input adheres to the following restrictions:

ż hemain function is monomorphic.

ż he arguments and the result of themain function are representable.

ż he arguments and the result of primitives are representable.

he TRS uses a combination of inlining and specialisation, where specialisation
takes on two forms:

98

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

ż Specialisation of a function on one of its arguments.

ż Elimination of a case-decomposition based on a known constructor.

Simply inlining all functions with non-representable arguments and results, and
inlining all non-representable let-bindings, is either undesired or not possible. In-
lining destroys the original function hierarchy, which we are trying to preserve, and
might also lead to loss in sharing.

Defunctionalisation

Reynolds-style defunctionalisation [57] is a well-known method for generating an
equivalent irst-order program from a higher-order program. Reynolds’ method
creates data types for arguments with a function-type. Instead of applying a higher-
order function to a value with a function-type, it is applied to a constructor for the
newly introduced data type. Application of the functional argument is replaced by
the application of a mini-interpreter. Given the following higher-order program:

1 uncurry f (a ,b) = f a b
2 main x = (uncurry (+) x) + (uncurry () x)

Reynolds’ method creates the following behaviourally equivalent irst-order pro-
gram:

1 data Function = Plus | Sub
2 apply Plus a b = (+) a b
3 apply Sub a b = () a b
4

5 uncurry f (a ,b) = apply f a b
6 main x = (uncurry Plus x) + (uncurry Min x)

Reynolds’ method works on all programs, removes all functional arguments, and
preserves sharing. Although commonly deined and studied in the setting of the
simply typed lambda calculus, there are also variants [6, 56] of Reynolds’ methods
that are correct within a polymorphic type system. he disadvantage of Reynolds’
method is the introduction of the mini-interpreter (which takes on the form of the
apply function in the example).

he apply function will be transformed into netlist that contains an adder and
subtracter whose results will be multiplexed to the output. In the above example,
the apply function will be instantiated twice, naively leading to a circuit with three
adders, two subtracters, and two multiplexers. Of course, we can specialize the two
calls to uncurry, and subsequently apply, on their irst argument to get a circuit
that has only two adders, one subtracter, and no multiplexers. We will therefore
not use (a variant of) Reynolds’ method in the CλaSH compiler, but instead opt to
specialise functions on their function-typed arguments immediately.

99

4.
3.
1
ś
E
li
m
in
at

in
g
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

es

Many of the rewrite rules used by the TRS described in this chapter can also be
found in optimizing compilers for functional languages, such as GHC [54]. he
rewrite rules presented by Peyton Jones and Santos [54] do, however, not guarantee
a irst-order normal form, which the TRS presented in this chapter does (given
certain restrictions on the input program).

Mitchell and Runciman [46] present a defunctionalisation method based on a TRS,
which, like the TRS presented in this chapter, also uses specialisation and inlining.
he presented TRS can thus be seen as an extension to the work of Mitchell and
Runciman:

ż It provides transformations that additionally perform monomorphisation,
which includes the specialisation of: higher-rank polymorphic arguments
and existential datatypes.

ż It can deal with recursive let-expressions.

ż It works on a typed language, and uses this type information to determine
when transformations should be applied.

Rewrite rules

Many of the rewrite rules in this section are straightforward encodings of the oper-
ational semantics for System FC. Proving them correct, type- and semantics-pre-
serving, is therefore in most cases trivial. We defer the correctness proofs of the
transformations to appendix D.

he irst three rewrite rules, TBeta, LetTApp, and CaseTApp, propagate type
information downwards into an expression. By either removing type-variables,
propagating type-information to a location for specialisation, or propagating type
information to a primitive or constructor, these rewrite rules aid in the elimination
of polymorphism.

TBeta (Λa ∶ κ.e) τ

e∥τ/a∥

LetTApp (let x ∶ σ ≙ e in u) τ

let x ∶ σ ≙ e in (u τ)

CaseTApp (case e of p → u) σ

case e of p → (u σ)

100

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Now follow the coercion propagation rules, CBeta, CLetApp, CCaseApp, Push,
TPush, CPush and KPush. Again, almost all of these transformations are direct
implementations of the System FC operational semantics:

CBeta (λc ∶ ϕ.e) γ

e∥γ/c∥

LetCApp (let x ∶ σ ≙ e in u) γ

(let x ∶ σ ≙ e in (u γ)

CaseCApp (case e of p → u) γ

case e of p → (u γ)

Push (e▷ γ) u

(e (u▷ sym(nth1γ)))▷ nth2γ

TPush (e▷ γ) τ Deinitions: γ′ ≙ sym(nth1γ)

(e (τ▷ γ′))▷ γ@(⟨τ⟩▷ γ′)

CPush (e▷ γ1) γ2 Deinitions: γ3 ≙ nth
1γ1 o

9 γ2 o
9 sym(nth

2γ1)

(e γ3)▷ γ1@(γ3 , γ2)

KPush

Deinitions: K ∶ ∀a ∶ κ.∀∆.σ → Ta
Ψ ≙ extend(context(γ); ρ;∆)
τ′ ≙ Ψ2(a)
ρ′ ≙ Ψ2(dom ∆)

e′i ≙ e i ▷ Ψ(σi)
i

case (K τ ρ e)▷ γ of p → u

case K τ′ ρ′ e′ of p → u

101

4.
3.
1
ś
E
li
m
in
at

in
g
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

es

he next three rewrite rules, LamApp, LetApp, and CaseApp, propagate values,
including non-representable ones, downwards into the expression. LamApp is
preferred over β-reduction to preserve sharing. CaseApp creates a let-binding,
instead of propagating the applied expression towards all alternatives, to preserve
sharing.

LamApp (λx ∶ σ .e) u

let {x ∶ σ ≙ u} in e

LetApp (let x ∶ σ ≙ e in u) e′

let x ∶ σ ≙ e in (u e′)

CaseApp (case e of p → u) e′

let {x ∶ σ ≙ e′} in (case e of p → (u x))

he next two rewrite rules, LetCast and CaseCast, propagate casts downward:

LetCast (let x ∶ σ ≙ e in u)▷ γ

let x ∶ σ ≙ e in (u▷ γ)

CaseCast (case e of p → u)▷ γ

case e of p → (u▷ γ)

he next rewrite rules, BindNonRep and LiftNonRep, remove both existing let-
binders, and let-binders introduced by LamApp and CaseApp, in case they bind
non-representable values.

BindNonRep removes a let-binder, x i ∶ σi ≙ e i (with a non-representable type
σi), and substitutes references to x i by the expression e i . An extra precondition is
that the binding may not be self-referencing, as removing the let-binder in such
a case would lead to a new free variable. Although substitution leads to loss in
sharing in the traditional sense, liting the let-binder to the global environment, as
will be done by LiftNonRep, would not result in the preservation of sharing in
the case TCλ . he reason is that applications of the lited function would result into
multiple instantiations of the component, where the circuitry within the individual

102

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

components cannot be shared. Actually, some of the sharing lost due to the substi-
tution performed by BindNonRepmight actually be recovered by a local common
sub-expression elimination (CSE) pass.

LiftNonRep removes a let-binder, x i ∶ σi ≙ e i (with a non-representable type σi),
and substitutes references to x i in the rest of the let-expression with an (application
of a) variable reference to a new, global, binder: f . his transformation is, how-
ever, only applied when the binder is self-referencing, and cannot be removed by
BindNonRep. he new global binder, f , binds the original expression e i which is
abstracted over the free local (type) variables of e i ; all references to x i are substi-
tuted with an (application of a) variable reference to f . Again, as explained earlier,
liting the binder to the global environment will not preserve sharing, and it is one
of the reasons why LiftNonRep is only applied when it is not possible to apply
BindNonRep (the other reason is explained in section 4.3.3).

BindNonRep

let {b1 ; ...; b i−1 ; x i ∶ σi ≙ e i ; b i+1 ; ...; bn} in u Preconditions: NONREP(σi)

(let {b1 ; ...; b i−1 ; b i+1 ; ...; bn} in u)∥e i/x i∥ ⋀ x i /∈ y

Deinitions: (a, y) ≙ FV(e i)

LiftNonRep

let {b1 ; ...; b i−1 ; x i ∶ σi ≙ e i ; b i+1 ; ...; bn} in u Preconditions: NONREP(σi)

(let {b1 ; ...; b i−1 ; b i+1 ; ...; bn} in u)∥ f z/x i∥ ⋀ x i ∈ y

⋀ a ≙ ∅

Deinitions: (a, y ∶ τ′) ≙ fv(e i); z ≙ y − {x i}

New Environment: Γ ∪α { f ∶ τ′ → σi ≙ λz ∶ τ′ .e i∥(f z)/x i∥}

he LiftNonRep rewrite rule uses the ∪α operator to indicate that the global envi-
ronment is only updated with the new binder, f , if an α-equivalent expression is not
already present. In case an α-equivalent expression is present in the environment,
the transformed expression will refer to that existing global binder instead.

he previous rewrite rules either propagated non-representable values downwards
into the expression, or lited those values out of the expression. he next two sets
of rewrite rules remove non-representable values by specialisation. he TypeSpec,
CoSpec, NonRepSpec, and CastSpec, provide function argument specialisation.
LetCase, CaseCase, InlineNonRep, and CaseCon, together achieve specialisa-
tion by eliminating case-decompositions of known constructors (of non-represen-
table data types).

103

4.
3.
1
ś
E
li
m
in
at

in
g
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

es

heTypeSpec rewrite rulematches on a type application, f τ, of a variable reference
to a global binder, f . A precondition for this specialisation is that τ cannot have
any free type or coercion variables. he application is replaced by a reference to
the new global binder f ′. he new binder f ′ is deined in terms of the body of
f specialized on the type τ. CoSpec behave like TypeSpec, but for applications
of coercions to global variable references, f γ. NonRepSpec behaves similarly to
TypeSpec for the application of a global variable on a non-representable arguments,
f u. he diference is that the expression of the new binder, f ′, is abstracted over the
free variables of the specialised argument; the transformed expression also takes
these free variables into account. CastSpec is not a specialisation transformation
in the traditional sense of propagating an argument expression to the function
deinition. Instead, it pushes the cast surrounding a reference to a global binder,
f , towards the body of f and creating a new binder f ′ for this specialized version.
he expression then references this new specialised binder f ′. CastSpec is mostly
present to enable iring of the other two specialisation transformations, TypeSpec
and NonRepSpec.

TypeSpec, CoSpec, NonRepSpec, and CastSpec, all use the ∪α operator to in-
dicate that the global environment is only updated with a new binder if an α-
equivalent specialization is not already present. In case an α-equivalent special-
isation is present in the environment, the transformed expression will refer to that
existing global binder instead.

TypeSpec (f e) σ Preconditions: fv(σ) ≙ ∅

f ′ e Deinitions: τ′ = TYPEOF(e)

New Environment: Γ ∪α { f
′ ∶ τ′ → τ ≙ λx ∶ τ.(Γ@ f x) σ}

CoSpec (f e) γ Preconditions: fv(γ) ≙ ∅

f ′ e Deinitions: τ′ = TYPEOF(e)

New Environment: Γ ∪α { f
′ ∶ τ′ → τ ≙ λx ∶ τ′ .(Γ@ f x) γ}

NonRepSpec (f e) u Preconditions: NONREP(σ)⋀ a ≙ ∅

f ′ e y Deinitions: (a, y ∶ σ ′) ≙ fv(u)
τ′ = TYPEOF(e)
σ = TYPEOF(u)

New Environment: Γ ∪α { f
′ ∶ τ′ → σ ′ → τ ≙ λx ∶ τ′ .λy ∶ σ ′ .(Γ@ f x) u}

104

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

CastSpec (f e) ▷ γ Preconditions: fv(γ) ≙ ∅

f ′ e Deinitions: τ′ = TYPEOF(e)

New Environment: Γ ∪α { f
′ ∶ τ′ → τ ≙ λx ∶ τ′ .(Γ@ f x)▷ γ}

he LetCase is required in specialising expressions that have a non-representable
datatype. Taking the let-binders out of the case-decomposition does not afect the
sharing behaviour so can be applied blindly. here is no free variable capture in the
alternatives because all variables are made unique before running the TRS.

he CaseCase rewrite rule is only applied if the subject of a case-decomposition
has a non-representable datatype. CaseCase is not applied blindly because the al-
ternatives in a case-decomposition are evaluated in parallel in the eventual circuit.
So theCaseCase rewrite rule generates a larger number of alternatives than present
in thematched expression. A larger number of alternatives results in a larger circuit.
Even though CaseCasemakes the circuit larger, the intention of CaseCase is to
eventually expose the constructor of the non-representable datatype to CaseCon.
CaseCon eliminates the case-decomposition, and subsequently amortizes the in-
crease in circuit size induced by CaseCase.

InlineNonRep is only applied if the subject of a case expression is of a non-repre-
sentable datatype, as inlining breaks down the component hierarchy. All bound
variables in the inlined expression are regenerated, and variable references updated
accordingly. his preserves the assumptions made by the other rewrite rules that
all variables are unique.

he CaseCon rule comes in three variants:

ż A case-decomposition with a constructor application as the subject, and a
matching constructor pattern.

ż A case-decomposition with a constructor application as the subject, with
nomatching constructor pattern.

ż A case-decomposition with one alternative, where the expression in the
alternative does not reference any of the variables in the pattern.

CaseCon only creates a let-binding if the constructor in the subject exactlymatches
the constructor of an alternative. When the default pattern is matched, the case-
decomposition is simply replaced by the expression belonging to the default alterna-
tive. he same happens when there is only one alternative and the expression in the
alternative does not reference any pattern variables. Case-decompositions in Sys-
tem FC are exhaustive, either by enumerating all the constructors, or by including
the default pattern. his means that when a constructor applications is the subject
of a case-decomposition, CaseCon will always remove that case-decomposition.

105

4.
3.
2
ś
C
o
m
pl
et
en

es
s
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

LetCase case (let x ∶ σ ≙ e in u) of p → u′

let x ∶ σ ≙ e in (case u of p → u′)

CaseCase Preconditions: NONREP(TYPEOF(u1))

case (case e of {p1 → u1 ; ... ; pn → un}) of p′ → u′

case e of p1 → case u1 of p′ → u′; ... ; pn → case un of p′ → u′}

InlineNonRep Preconditions: NONREP(TYPEOF(f e))

case f e of p → u

case (Γ@ f e)of p → u

CaseCon

case K i τ ρ e of {...;K i ∆ x ∶ σ → u i ; ...}

let x ∶ σ ≙ e in (u i ∥ρ/∆∥)

case K i τ ρ e of {p j≠i → u; _→ u0}

u0

case e of {p0 → u0} Preconditions: fv(u0) − fv(p0 → u0) ≙ ∅

u0

4.3.2 Completeness of non-representable value removal

We start with the following three deinitions:

Deinition 4.5 (Representable function type). A representable function type, is a
function type where the let hand side (LHS) of the arrow (→) is a representable
type, and the right hand side (RHS) of the arrow is either: a representable type, or a
representable function type.

Deinition 4.6 (Representable binding). A binding (x,e) is a representable binding,
when:

ż All variables bound in e have a representable type.

ż All arguments in an application in e have a representable type.

ż he expressions e has a representable type, or a representable function type
(deinition 4.5).

106

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Deinition 4.7 (Representable environment). A representable environment is a clo-
sed environment where every binding is a representable binding.

he irst set of rewrite rules (TBeta - LiftNonRep) propagate or remove non-
representable values for those syntactical elements on which the specialisation
rewrite rules do not match. he second set of rewrite rules (TypeSpec - CaseCon)
remove the non-representable values through specialisation. he two sets of rewrite
rules ensure that the resulting environment of the normalisation phase is a repre-
sentable environment (deinition 4.7), given the restrictions in Section 4.3.1.

he restrictions on primitives are needed because those cannot be specialized on
their argument, nor can their deinitions be inlined. he restriction that the result
type ofmain cannot be a non-representable data type, ensures that any expression
calculating a non-representable data type always becomes the subject of a case-
decomposition, which will be removed by the TRS.

his section will prove the following two theorems, which together ensure that,
when the normalisation inishes, the resulting environment is a representable envi-
ronment.

heorem: 4.3.1 (Representable bindings). When the main function, and all used
primitives have representable (function) types then, given a binding (x,e), (x,e) is
either a representable binding, or one of the rewrite rules applies to e.

heorem: 4.3.2 (Representable environment). Given a closed environment Γ, an
environment of representable bindings Γr , and a binding (x,e). Let (e’,Γ′) be the re-
sulting tuple of exhaustively applying all the rewrite rules to e and Γ, and let Γ′r ≙
Γr ∪ {(x , e′)}. hen (x,e’) is a representable binding; and Γ′r is a representable en-
vironment or normalisation continues with Γ′, Γ′r , and the binders corresponding to
the free variables in Γ′r .

Notation

In order to give structure to the proofs of the above theorems we introduce a no-
tation to represent all possible expressions. We will model expressions (not types
or coercions) in System FC as a set of syntax trees. We do this, so that ater every
lemma, or in intermediate parts of a proof, we can show how that the set of all pos-
sible expressions ater applying the rewrite rules exhaustively become smaller. We
will ultimately end up with a set of possible expressions where our will theorems
hold, thus having inished our proof.

We start with the deinitions of a few basic sets. here is the set V which represents
all local variables, those not bound in the environment, and the set F which repre-
sents all global variables, those bound in the environment. Next we have P , the set
of primitives, K, the set of data constructors, T , the set of types, and C, the set of
coercions. For the purpose behind our notation, to give structure to the proofs, it
is not necessary to specify how these sets are generated.

107

4.
3.
2
ś
C
o
m
pl
et
en

es
s
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

Next we deine our set generators, which can generate certain sets of expressions.
Notice that most are parametrized in the sets from which they can draw elements.

lam x = {λy ∶ τ.e ∣ y ∈ V , τ ∈ T , e ∈ x}
app x y = {e u ∣ e ∈ x , u ∈ y}
tyLam x = {Λa ∶ κ.e ∣ a ∈ V , κ ∈ T , e ∈ x}
tyApp x = {e τ ∣ e ∈ x , τ ∈ T }
coLam x = {λc ∶ ϕ.e ∣ c ∈ V , ϕ ∈ C , e ∈ x}
coApp x = {e γ ∣ e ∈ x , γ ∈ C}
prim = P
con =K
var = V
fun = F
let x y = {let v ∶ τ ≙ e in u ∣ v ⊆ V , τ ⊆ T , e ⊆ x , u ∈ y}

case x y = {case e of p → u
+
∣ e ∈ x , p ⊆ {_} ∪ pat, u ⊆ y}

pat = {K ∆ x ∶ σ ∣ K ∈ K, ∆ ⊆ tele, x ⊆ V , τ ⊆ T }
tele = {a ∶ κ ∣ a ∈ V , κ ∈ T } ∪ {c ∶ ϕ ∣ c ∈ V , ϕ ∈ C}
cast x = {e▷ γ ∣ e ∈ x , γ ∈ C}

We deine three derived set generators which we use to model nested application:

app∗ x y = {e u ∣ e ∈ (x − app x y), u ⊆ y}
tyApp∗x = {e τ ∣ e ∈ (x − tyApp x y), tau ⊆ T }
coApp∗x = {e γ ∣ e ∈ (x − coApp x y), tau ⊆ C}

where the LHS of the nested application is not itself that speciic kind of application.
So app∗ x y, generates all nested term applications from expressions drawn from
the sets x and y, but not the expressions in x that are themselves term applications;
but it will, for example, generate a nested term application of a type application.

Note that we have not included a set generator for projections. he reason is that
projections are only introduced by the second pass of the normalisation phase.
Projections do not occur in the expressions generated by the front-end, nor do our
rewrite rules for non-representable value elimination introduce projections.

he set of expressions we can possibly create is the ixed point of the equation:
S0 ≙ lam S0 ∪ app

∗ S0 S0 ∪ tyLam S0 ∪ tyApp
∗ S0 ∪ coLam S0 ∪ coApp

∗ S0 ∪
prim ∪ con ∪ var ∪ fun ∪ let S0 S0 ∪ case S0 S0 ∪ cast S0

For every lemma n and its corresponding proof, we will deine a new set of expres-
sion, Sn , that are possible under the restrictions of the lemma. Every subsequent
set of possible expressions is a proper subset of the previous set, that is, Sn ⊃ Sn+1.

108

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Proof of the theorems

For our proofs of theorem 4.3.1 and theorem 4.3.2, wewill irst need to deine several
lemmas.

Lemma: 4.3.1 (Correctly typed). Expressions are correctly typed. herefore:

1. he subject of a case-decomposition is not an abstraction.

2. Term-abstractions are never the subject of a type- or coercion-application.

3. Type-abstractions are never the subject of a term- or coercion-application.

4. Coercion-abstractions are never the subject of a term- or type-application.

5. Constructors are irst applied to their type and coercion arguments, before
they are applied to their term arguments.

6. By the well-formedness check (appendix C), primitives are monomorphic.

Proof. he original expression is correctly typed and all of our transformations
preserve correct typing.

We deine our new set of possible expressions under the restrictions set by the
lemma as:

S1 ≙ lam S1 ∪ app∗ (S1 − tyLam S1 − coLam S1) S1 ∪ tyLam S1 ∪ tyApp∗ A1 ∪

coLam S1 ∪ coApp∗ B1 ∪ prim ∪ con ∪ var ∪ fun ∪ let S1 S1 ∪ case (S1 −
lam S1 − tyLam S1 − coLam S1) S1 ∪ cast S1

A1 ≙ app
∗
(S1 −prim− con− tyLam S1 − coLam S1) S1 ∪ tyLam S1 ∪ coApp∗ B1 ∪

con ∪ var ∪ fun ∪ let S1 S1 ∪ case (S1− lam S1−tyLam S1−coLam S1) S1∪ cast S1

B1 ≙ app
∗
(S1 −prim− con− tyLam S1 − coLam S1) S1 ∪ tyApp∗ A1 ∪ coLam S1 ∪

con ∪ var ∪ fun ∪ let S1 S1 ∪ case (S1− lam S1−tyLam S1−coLam S1) S1∪ cast S1

For readability, we have deined two new subsets,A1 and B1, to represent the pos-
sible expressions that can form the LHS of a type application (A1) or the LHS of a
coercion application (B1).

Lemma: 4.3.2 (Only constructor, variable, function, and primitive applications).
here are only type- and coercion-applications of constructors and of (applications
of) local variables. here are only term-applications of: global functions, primitives,
constructors, local variables, and of the earlier mentioned type- and coercion-applica-
tions.

Proof. By enumerating all the other possible locations for type-, coercion-, and
term-applications in S1, and showing that they are removed by one of the transfor-
mations.

109

4.
3.
2
ś
C
o
m
pl
et
en

es
s
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

ż An application of a term-abstractions is removed by LamApp.

ż An application of a let-expressions is removed by the LetApp.

ż An application of a case-decomposition is removed by CaseApp.

ż An application of a cast is removed by Push

ż Types applied to type-abstractions are propagated by TBeta.

ż Types applied to global functions are propagated by TypeSpec.

ż Types applied to let-expressions are propagated by LetTApp.

ż Types applied to case-decompositions are propagated by CaseTApp.

ż Types applied to casts are removed by TPush.

ż Coercions applied to coercion-abstractions are propagated by CBeta.

ż Coercions applied to global functions are propagated by CoSpec.

ż Coercions applied to let-expressions are propagated by LetCApp.

ż Coercions applied to case-decompositions are propagated by CaseCApp.

ż Coercions applied to casts are removed by CPush.

hus, our new set of possible expressions possible under the lemma, is deined by:

S2 ≙ lam S2 ∪ app∗ (prim ∪ con ∪ var ∪ fun ∪ tyApp∗ A2 ∪ coApp∗ B2) S2 ∪
tyLam S2 ∪ tyApp∗ A2 ∪ coLam S2 ∪ coApp∗ B2 ∪ prim ∪ con ∪ var ∪ fun ∪

let S2 S2 ∪ case (S2 − lam S2 − tyLam S2 − coLam S2) S2 ∪ cast S2

A2 ≙ app
∗ var S2 ∪ coApp∗ B2 ∪ con ∪ var

B2 ≙ app
∗ var S2 ∪ tyApp∗ A2 ∪ con ∪ var

Note that we still deine subsets for the LHSs of type and coercion applications.

Deinition 4.8 (Representable set). We deine Rn as the set of expressions drawn
from Sn whose type is representable.

Lemma: 4.3.3 (Representable arguments). he arguments of an application of a
primitive or of a global function are representable.

Proof. he precondition states that all arguments to primitives must have a re-
presentable type. Non-representable arguments applied to global functions are
propagated by NonRepSpec.

110

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Our new set of possible expressions is:

S3 ≙ lam S3 ∪ app∗ (con ∪ var ∪ tyApp∗ A2 ∪ coApp∗ B2) S3 ∪ app∗ (prim ∪

fun)R3 ∪ tyLam S3 ∪ tyApp∗ A2 ∪ coLam S3 ∪ coApp∗ B2 ∪ prim ∪ con ∪

var ∪ fun ∪ let S3 S3 ∪ case (S3 − lam S3 − tyLam S3 − coLam S3) S3 ∪ cast S3

A3 ≙ app
∗ var S3 ∪ coApp∗ B3 ∪ con ∪ var

B3 ≙ app
∗ var S3 ∪ tyApp∗ A3 ∪ con ∪ var

Lemma: 4.3.4 (Representable let-bindings). All let-bindings are representable.

Proof. Let-bindings with a type that is not representable are either inlined by Bind-
NonRep, or turned into a global function by LiftNonRep.

Our new set of expressions still possible under the lemma is:

S4 ≙ lam S4 ∪ app∗ (con ∪ var ∪ tyApp∗ A2 ∪ coApp∗ B2) S4 ∪ app∗ (prim ∪

fun)R4 ∪ tyLam S4 ∪ tyApp∗ A2 ∪ coLam S4 ∪ coApp∗ B2 ∪ prim ∪ con ∪

var ∪ fun ∪ letR4 S4 ∪ case (S4 − lam S4 − tyLam S4 − coLam S4) S4 ∪ cast S4

A4 ≙ app
∗ var S4 ∪ coApp∗ B4 ∪ con ∪ var

B4 ≙ app
∗ var S4 ∪ tyApp∗ A4 ∪ con ∪ var

henext two lemmas, lemma 4.3.5 and lemma 4.3.6, form a bi-implication. he irst
lemma, lemma 4.3.5, shows that ater all transformations have been applied exhaus-
tively, all remaining pattern-bound variables are representable. he second lemma,
lemma 4.3.6, shows that ater all transformations have been applied exhaustively,
all remaining lambda-bound variables are representable. As these lemmas form a
bi-implication we will deine our new set of possible expressions in corollary 4.3.1
which follows the two lemmas.

Lemma: 4.3.5 (Representable pattern-binders). If there are only representable
lambda-binders, then the subjects of case-decompositions are representable.

Proof. Case-decompositions with an (application of a) constructor are removed
by CaseCon. We thus show that, when the subject of a case-decomposition has a
non-representable type, then the subject always becomes a constructor application.
We only enumerate then cases still allowed by S4:

ż (Applications of) global functions are inlined by InlineNonRep

111

4.
3.
2
ś
C
o
m
pl
et
en

es
s
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

ż Let-expressions will have their let-bindings extracted by CaseLet, leaving
only the body.

ż Case-decompositions have their alternatives propagated to the alternatives
of the encompassing case-decomposition by CaseCase.

ż Regarding casts:

ś Casts of (applications of) global functions are propagated by Cast-
Spec.

ś Casts of (applications of) constructors are propagated by KPush.
ś Casts of let-expressions are propagated by LetCast.
ś Casts of case-decompositions are propagated by CaseCast.

ż Regarding (applications or casts of) local variables:

ś By the precondition, it cannot be a lambda-bound variable, as it would
be non-representable.

ś It cannot be a pattern-bound variable, as that would imply that the
subject of a case-decomposition has a non-representable type. By the
induction hypothesis, those case-decompositions have already been
removed by CaseCon.

Lemma: 4.3.6 (Representable lambda-bindings). If there are only case-decomposi-
tions with representable subjects, then all lambda-binders are representable.

Proof. he normalisation process proceeds in a top-down traversal of the function
hierarchy, starting with the main function. We prove, by induction, that term-
abstraction with a non-representable binder no longer exist:

ż We are normalising themain function:

ś By the precondition on normalisation,main has a representable func-
tion type.

ś hepossible locations for a term-abstraction with a non-representable
binder still possible in S4 are: as an argument of a constructor or a
local variable application.

ś However, a constructor with a non-representable argument is itself
non-representable. By the precedent of the lemma, that subjects of
case-decompositions are representable, so the non-representable con-
structor application can also only occur as an argument to a construc-
tor or variable application.

ś Because subjects of case-decompositions are representable, there are
however no pattern-bound variables that can be the LHS of an appli-
cation.

ś When a lambda-bound variable is the LHS of an application, then the
term-abstraction which introduces the binder can also only exists as
an argument to an application.

112

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

ś Becausemain has a representable function type, the above mentioned
application do not exist.

ż We are normalising a function other thanmain:

ś he type of the expression must be a representable (function) type.
Otherwise the expression would have been inlined by InlineNonRep,
or it would have entailed that the callers in the function hierarchy, and
ultimatelymain would have had a non-representable (function) type.

ś he expressions has a representable (function) type; by lemma 4.3.3
the expression is specialised on all non-representable argument. Any
term-abstraction that would have contributed to a non-representa-
ble function type has thus become the subject of an application. By
lemma 4.3.2, those applications are removed, as witnessed by the pos-
sible expressions we can draw from S4.

ś Following the same reasoning as for the normalisation ofmain, term-
abstractions with a non-representable type cannot occur anywhere
else.

Corollary: 4.3.1 (No variable applications). Applications of local variables are re-
moved, and all bound variables are representable.

Proof. Lemma 4.3.5 proves that, if there are only representable lambda-binders,
then the subjects of case-decompositions are representable. Lemma 4.3.6 proves
that, if there are only case-decompositions with representable subjects, then all
lambda-binders are representable. From lemma 4.3.5 we can derive that all pattern-
bound variables are representable.

Lemmas 4.3.4, 4.3.5, and 4.3.6 together show that all bound variables are represen-
table. his entails that there are no local variables with a polymorphic or function
type.

Our new set of expressions still possible under the corollary is:

S5 ≙ lamS5 ∪ app
∗
(con ∪ tyApp∗A5∪ coApp

∗ B5)S5 ∪ app
∗
(prim ∪ fun)R5 ∪

tyLam S5 ∪ tyApp∗ A5 ∪ coLam S5 ∪ coApp∗ B5 ∪ prim ∪ con ∪ var ∪ fun ∪

let R5 S5 ∪ caseR5 S5 ∪ cast S5

A5 ≙ coApp
∗ B5 ∪ con

B5 ≙ tyApp
∗ A5 ∪ con

Deinition 4.9 (Type- and coercion-applied constructor). We deine a new set gen-
erator which we use to model constructors applied to types and coercions:

113

4.
3.
2
ś
C
o
m
pl
et
en

es
s
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

con∆ = {K τ ρ ∣ K ∈ K, τ ⊆ T , ρ ⊆ (T ∪ C)}

We can now remove the explicit type and coercion applications from our possible
set of expressions and redeine S5 as:

S5 ≙ lam S5 ∪ app∗ con∆ S5 ∪ app∗ (prim ∪ fun)R5 ∪ tyLam S5 ∪ coLam S5 ∪
prim ∪ con∆ ∪ var ∪ fun ∪ let R5 S5 ∪ caseR5 S5 ∪ cast S5

Lemma: 4.3.7 (No type- or coercion-abstractions). All type-abstractions and all
coercion-abstractions are removed.

Proof. he normalisation process proceeds in a top-down traversal of the function
hierarchy, starting with the main function. We prove, by induction, that type-ab-
stractions and coercion-abstractions no longer exist:

ż We are normalising themain function:

ś By the precondition on normalisation,main has a representable func-
tion type.

ś he only possible location where type- and coercion-abstraction are
still possible in S5, are as arguments in a constructor application.

ś hose constructor applications would themselves be non-representa-
ble, and can also only exists as arguments in a constructor application.

ś Becausemain has representable function type, those applications do
not exist.

ż We are normalising a function other thanmain:

ś he type of the expression must be a representable (function) type.
Otherwise the expression would have been inlined by InlineNonRep,
or it would have entailed that the callers in the function hierarchy, and
ultimatelymain would have had a non-representable (function) type.

ś he expressions has a representable (function) type; by lemma 4.3.3
the expression is specialised on all type and coercion arguments. Any
type- or coercion-abstraction that would have contributed to a non-
representable function type have thus become the subject of a type- or
coercion-application. By lemma 4.3.2, those applications are removed,
as witnessed by the possible expressions we can draw from S5.

ś Following the same reasoning as for the normalisation ofmain, type-
abstractions and term-abstractions cannot occur anywhere else.

S6 ≙ lam S6 ∪ app∗ con∆ S6 ∪ app∗ (prim ∪ fun)R6 ∪ prim ∪ con ∪ var ∪
fun ∪ let R6 S6 ∪ caseR6 S6 ∪ cast S6

We now recapitulate our two theorems, theorem 4.3.1 and theorem 4.3.2, and prove
them with using our lemmas. Recall deinition 4.6:

114

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Deinition 4.6 (Representable binding). A binding (x,e) is a representable binding,
when:

ż All variables bound in e have a representable type.

ż All arguments in an application in e have a representable type.

ż he expressions e has a representable type, or a representable function type
(deinition 4.5).

heorem: 4.3.1 (Representable bindings). When the main function, and all used
primitives have representable (function) types then, given a binding (x,e), (x,e) is
either a representable binding, or one of the rewrite rules applies to e.

Proof. Combining lemmas 4.3.1 - 4.3.7 and corollary 4.3.1 we arrive at a set of pos-
sible expression forms, S6, when all rewrite rules have been exhaustively applied.
In S6, all bound variables have a representable type (corollary 4.3.1), and the argu-
ments of a primitive application and global function application are representable.
Constructors with non-representable arguments are themselves non-representable.
he normalisation process proceeds in a top-down traversal of the function hier-
archy, starting with themain function. We prove, by induction, that constructors
with non-representable arguments no longer exist:

ż We are normalising themain function:

ś By the precondition on normalisation,main has a representable func-
tion type.

ś he only possible location where non-representable constructor are
still possible in S6, are as arguments in a constructor application.

ś hose constructor applications would themselves be non-representa-
ble, and can also only exists as arguments in a constructor application.

ś Becausemain has representable function type, those applications do
not exist.

ż We are normalising a function other thanmain:

ś he type of the expression must be a representable (function) type.
Otherwise the expression would have been inlined by InlineNonRep,
or it would have entailed that the callers in the function hierarchy, and
ultimatelymain would have had a non-representable (function) type.

ś Following the same reasoning as for the normalisation of main, con-
structors with non-representable arguments cannot occur anywhere
else.

Our inal set of possible expressions is hence:

S7 ≙ lam S7 ∪ app∗ (con∆ ∪ prim ∪ fun)R7 ∪ prim ∪ con ∪ var ∪ fun ∪

let R7 S7 ∪ caseR7 S7 ∪ cast S7

115

4.
3.
3
ś
T
er

m
in
at

io
n
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

heorem: 4.3.2 (Representable environment). Given a closed environment Γ, an
environment of representable bindings Γr , and a binding (x,e). Let (e’,Γ′) be the re-
sulting tuple of exhaustively applying all the rewrite rules to e and Γ, and let Γ′r ≙
Γr ∪ {(x , e′)}. hen (x,e’) is a representable binding; and Γ′r is a representable en-
vironment or normalisation continues with Γ′, Γ′r , and the binders corresponding to
the free variables in Γ′r .

Proof. By theorem 4.3.1 exhaustively applying all the rewrite rules to an expression
in the binding (x,e) creates a realisable binding (x,e’). So Γ′r is also a set of realisable
binders. When Γ′r is closed, Γ

′
r is a representable environment. When Γ′r is not

closed, the normalisation process will normalise the binders referenced in Γ′r but
are themselves not in Γ′r .

Now that we have proven that the normalisation process produces a representable
environment, under the precondition that main and all used primitives have a re-
presentable function type, we will now move on to the termination aspects of the
non-representable value removal pass.

4.3.3 Termination of non-representable value removal

here are several (combinations of) rewrite rules that induce non-termination of
the unconstrained TRS. he CλaSH compiler must therefore:

ż Apply the rewrite rules according to a speciic strategy.

ż Include termination measures.

When one of the termination measures is triggered, non-representable values re-
main present in the description. TCλ will not be able to transform the description
to a netlist when that happens.

It should be noted that these termination measures are only trigged on functions
that contain unbounded (mutually) recursive function calls, or have a (mutually)
recursive data type as a result; functions which cannot be synthesized by TCλ any-
way. It can hence be said that theCλaSH compiler can produce circuits for all useful
circuit descriptions.

In the next three subsections we highlight where non-termination might occur,
and how it is prevented. We will use Haskell instead of System FC, for purposes
of brevity, to present expressions that can induce non-termination in the uncon-
strained TRS.

Non-termination of InlineNonRep

Although inlining is already restricted to subjects of case decompositions that have
a non-representable type, inlining can still cause non-termination. his happens
when a recursive function call becomes the subject of a case decomposition:

116

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

data B a = B a
f = case f of B _ → B (λx → x)

Where the type of f is data type with a ield that has a function value, which is a
non-representable data type. When we now apply the transformation rules, we get:

case f of B _ → B (λx → x)
⇒ InlineNonRep

case (case f of B _ → B (λx → x)) of B _ → B (λx → x)
⇒ CaseCase

case f of B _ → (case B (λx → x) of B _ → B (λx → x))
⇒ CaseCon

case f of B _ → B (λx → x)

Obviously this sequence of transformations will never terminate. Beside the fact
that the expression is recursive, it also has a non-representable type, meaning it
could have never been transformed to an actual circuit.

If we were to use f in an expression where its result is never used internally, such
as:

main = λx → case f of B _ → x

hen the order in which the transformations are applied will determine if normal-
isation terminates or not. If CaseCon is applied irst we will terminate with the
expression:

main = λx → x

However, if we delayed the application of the CaseCon rule, we might end up with
the following sequence of transformations:

λx → case f of B _ → x
⇒ InlineNonRep

λx → case (case f of B _ → B (λx → x)) of B _ → x
⇒ CaseCase

λx → case f of B _ → (case B (λx → x) of B _ → x)
⇒ CaseCon

λx → case f of B _ → x

Resulting in a expression that will loop in the same way as the expression bound to
f . To prevent such sequences from occurring we have adapted the strategy of our
TRS to apply the CaseCon transformation before InlineNonRep.

If f were bound in a let-expression, and the bound variable is not used inside the
expression, then the use of f will disappear from the function hierarchy through
LiftNonRep or BindNonRep. In case f is applied to a term abstraction where the
abstracted variable is not used, then f will also disappear from the function hierar-
chy through the combination of LamApp and, LiftNonRep or BindNonRep.

117

4.
3.
3
ś
T
er

m
in
at

io
n
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

Additionally, although the TRS does not contain β-reduction as one of the rewrite
rules, LamApp, LiftNonRep, InlineNonRep, and CaseCon together behave like
β-reduction. his means that the typed version of (λx → x x) (λx → x x):

data T = C (T → Int)
(λx → case x of C h → h x) (C (λx → case x of C h → h x))

induces non-termination. To prevent this situation from happening, a function f
can only be inlined a inite number of times, where the amount of inlinings per
function can be set by the user of the CλaSH compiler.

Non-termination of specialisation

A situation that would cause non-termination of NonRepSpec, is when the non-
representable argument that will be propagated has local free variables with a non-
representable type.

let x : Int → Int = λx: Int → x in f x
⇒ NonRepSpec

let x : Int → Int = λx: Int → x in f ’ x
⇒ NonRepSpec

let x : Int → Int = λx: Int → x in f ’ x
⇒ NonRepSpec

let x : Int → Int = λx: Int → x in f ’ x

In this situation, the local free variable (which has a non-representable type) would
also be applied to the specialized function. heNonRepSpec transformationwould
thus specialize indeinitely as the local free variables, who have a non-representable
type, will remain applied to the specialized function. his is one of the reasons
why the strategy of our TRS only applies the NonRepSpec transformation when
all the other transformations have already been exhaustively applied. When Non-
RepSpec is applied last, all local free variables with a non-representable type are
replaced by either a global variable or a term-abstraction (through BindNonRep
and LiftNonRep).

Another reason for non-termination as a result of NonRepSpec is when a recursive
function f has an argument that accumulates non-representable values.

main = f id
f :: (Int → Int) → Int → Int
f g x = f ((+1) . g) x

Which ater the irst specialisation becomes:

main = f ’
f :: (Int → Int) → Int → Int
f g x = f ((+1) . g) x

f ’ x = f ((+1) . id) x

118

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

And ater another round of specialisation becomes:

main = f ’
f :: (Int → Int) → Int → Int
f g x = f ((+1) . g) x

f ’ x = f ’’ x
f ’’ x = f ((+1) . ((+1) . id)) x

Which would lead to endless specialisations of f . To ensure termination, a Non-
RepSpec is only applied to a function a inite number of times, where the amount
of specialisation per function can be set by the user of the CλaSH compiler.

In a situation similar to the above, TypeSpec can induce non-termination when
specialising polymorphic recursive functions such as:

1 data Nested a = a : ⟨ : (Nested [a]) | Epsilon
2 inixr 5 : ⟨ :
3

4 lengthN :: Nested a → Int
5 lengthN Epsilon = 0

6 lengthN (_ : ⟨ : xs) = 1 + lengthN xs
7

8 main :: Nested Int → Int
9 main = lenghtN

Where lengthN, will irst be specialised on Int, ater that on [Int], ater that on [[Int]],
and so on. So to ensure termination, not only NonRepSpec is equipped with a
termination measure that limits the number of specialisations. All specialisation
functions, NonRepSpec, TypeSpec, CoSpec, and CastSpec, are only applied a
inite number of times.

Looping of NonRepSpec and LiftNonRep

We have already elaborated why applying BindNonRep is preferable above Lift-
NonRep when possible. Below we show a situation why BindNonRep must be
included to prevent non-termination.

he LiftNonRep transformation could induce non-termination in the presence
of recursion. Again, we want to highlight that unbounded recursion is not synthe-
sisable to a digital circuit under our synthesis scheme TCλ . he following example
will result in non-termination due to interactions between LiftNonRep andNon-
RepSpec:

main = f not
f = λa x → (a x) && (f a x)

In the irst iteration, we create a version of f specialized on not: f ′:

119

4.
3.
3
ś
T
er

m
in
at

io
n
o
f
n
o
n
-r
ep
r
es
en

ta
b
le

va
lu

e
r
em

o
va

l

main = f ’
f = λa x → (a x) && (f a x)
f ’ = (λa x → a x && (f a x)) not

When the TRS starts working on f ′, it will irst bind not to the variable a in a
let-binding through LamApp.

main = f ’
f = λa x → (a x) && (f a x)
f ’ = let a = not in (λx → a x && (f a x))

he a binder is turned into a global variable g by LiftNonRep.

main = f ’
f = λa x → (a x) && (f a x)
f ’ = λx → g x && (f g x)
g = not

he recursive call to f will now be specialized on g, to create a new version of f
called f ′′.

main = f ’
f = λa x → (a x) && (f a x)
f ’ = λx → g x && (f ’’ x)
g = not
f ’’ = (λa x → (a x) && (f a x)) g

his process will continue indeinitely, as LiftNonRep will create a new global
variable, meaning the specializations are not α-equivalent. Specialization would
therefore generate an ininite number of specializations of f .

his is the reason that LiftNonRep only works for self-referencing let-binders, and
BindNonRep is used for all the others. When the set of functions has the form:

main = f ’
f ’ = let a = not in (λx → a x && (f a x))
f = λa x → (a x) && (f a x)

Instead of creating a new function g, the function not is simply inlined by Bind-
NonRep in f ′.

main = f ’
f ’ = λx → not x && (f not x)
f = λa x → (a x) && (f a x)

Specialization will in this case not create a new function f ′′, because the specialisa-
tion of f on not has been seen before.

120

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

main = f ’
f ’ = λx → not x && (f ’ x)
f = λa x → (a x) && (f a x)

Strategy

We have seen that the unconstrained TRS can induce non-termination, and that
in some cases extra termination measures have to be implemented in the CλaSH
compiler. Other forms of non-termination could be induced by picking the trans-
formations in the wrong order. We thus apply the transformations in a speciic
order. We classify our transformations in three groups:

Argument specialisation: hese transformations specialise top-level functions on
their argument, which are: TypeSpec, CoSpec, and NonRepSpec.

Inlining: hese transformations inline top-level functions, which is only the Inli-
neNonRep transformation.

Propagation: hese transformations propagate informations downwards into the
expression, and includes all the transformations not mentioned above.

he strategy that we employ is the following:

1. Apply the propagation transformations in an inner-most traversal.

2. Apply the inlining transformations in a bottom-up traversal, if these succeed,
run step 1 again.

3. Apply the specialisations transformations in a bottom-up traversal.

Neither the correctness of the individual transformations, nor the guarantee of
a normal form, are dependent on this speciic ordering of transformations. he
argument-specialisation rewrite rules are applied last, so that the fewest number
of new functions is introduced, and the original function hierarchy is preserved
as much as possible. Because specialisation transformations do not create expres-
sions on which the other rewrite rules match, all rewrite rules have been applied
exhaustively ater the traversal with specialisation transformations. he CastSpec
transformation is included in the propagation transformations, and not the spe-
cialisation transformations, because it enables irings of InlineNonRep. Putting
CastSpec in the propagations transformations is hence required in order to guar-
antee the normal form.

4.3.4 Simplification

he normal form that facilitates a trivial translation to a netlist is repeated in ig-
ure 4.15. A top-level expression, t , is single let-expression with a variable reference
as a body; it is possibly λ-abstracted over its arguments. he bindings of the let-
expression are all in administrative normal form (ANF).

121

4.
3.
4
ś
Si
m
pl
if
ic
at

io
n

Representable types
τr ::= Tr τr Representable data types

∣ (F τ)r Representable type function result

Representable expressions

t ::= λ(x ∶ τr).let y ∶ τr ≙ r
+
in y j Top-level function

r ::= x Local variable reference

∣ f x Saturated top-level function

∣ K τr ∅ x Saturated data constructor

∣ ⊗ x Saturated primitive

∣ case x of p → y Case decomposition

∣ πk
i x Projection

Patterns
p ::= _ Default case

∣ K ∅ _ Matches data constructor

Figure 4.15 ś System FC in Normal Form, repeated

he grammar that we can extract from S7 of theorem 4.3.1 (from the proof of
representable binders) is given in igure 4.16. It shares the type grammar with
igure 4.15. he next four subsections describe the transformations that reduce an
expression from the grammar in igure 4.16 to the desired normal form, given that
the rewrite rules from the previous section have already been exhaustively applied.
Each subsection describes a set of transformations, these sets are applied in the
order that they are described, and every set has its own strategy.

Eta-expansion

he irst step of the simpliication process is η-expanding the top level expression
in a top-down traversal until the sub-expression no longer has a function type.
We subsequently apply an inner-most traversal with the transformations LamApp,
LetApp, and CaseApp.

EtaExpand

e Preconditions: τ ≙ σ → τ′ ∧ e /≙ λy ∶ σ ′ .e′

λx ∶ σ .e x Deinitions: τ = TYPEOF(e)

As a result, we will only have a top-level term-abstractions. Term-abstraction in
the body of let-expression and alternatives of case-decompositions will have disap-
peared. he resulting grammar ater this process is:

122

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Representable expressions

r ::= λ(x ∶ τr).e Term abstraction

∣ x Local variable reference

∣ f r Saturated top-level function

∣ K τr ∅ r Saturated data constructor

∣ ⊗ r Saturated primitive

∣ let y ∶ τr ≙ r in r Let expression

∣ case r of p → r Case decomposition

∣ r▷ γ Cast

Patterns
p ::= _ Default case

∣ K ∅ x ∶ τ Matches data constructor

Figure 4.16 ś System FC in representable form

t ::= λ(x ∶ τr).r Term abstraction

r ::= x Local variable reference

∣ f r Saturated top-level function

∣ K τr ∅ r Saturated data constructor

∣ ⊗ r Saturated primitive

∣ let y ∶ τr ≙ r in r Let expression

∣ case x of p → r Case decomposition

∣ r▷ γ Cast

Administrative normal form

We turn all application into administrative normal form (ANF) using the ANF
transformation.

ANF

e u Preconditions: u /≙ x

let {x ∶ σ ≙ u} in e x Deinitions: σ = TYPEOF(u)

Case-decompositions are also transformed into ANF. he irst rewrite rule, Sub-
jectANF, creates a binding for the subject of a case-decomposition if this subject

123

4.
3.
4
ś
Si
m
pl
if
ic
at

io
n

is not already a local variable reference.

SubjectANF

case e of p → u Preconditions: e /≙ x

let {x ∶ σ ≙ e} in case x of p → u Deinitions: σ = TYPEOF(e)

he second rewrite rule, AltANF, creates bindings for the expressions in the alter-
natives of a case-decomposition. As it was the case for SubjANF, the expression uk

must not already be local variable references. Aside from creating let-bindings for
the expressions,AltANF let-binds projections, πk

i , for the pattern variables yk that
are referenced in the expression uk . Note that these projections will never be evalu-
ated when their argument, x, is not of the expected constructor, as the expression
referencing their let-binders, uk , is only evaluated when the case-decomposition
evaluating uk has already asserted that x has the expected constructor.

AltANF

case e of {...; pk → uk ∶ σ ; ...}

let {z ∶ τ i ≙ πk
i x; xk ∶ τ ≙ uk∥z/yk∥} in case e of {...; pk → xk ; ...}

Preconditions: uk /≙ x
Deinitions: (∅, yk ∶ τ) = fv(uk) - fv(pk → uk)

hese three transformations are applied in a single bottom-up traversal, and result
in the following new grammar:

r ::= x Local variable reference

∣ f x Saturated top-level function

∣ K τr ∅ x Saturated data constructor

∣ ⊗ x Saturated primitive

∣ let y ∶ τr ≙ r in r Let expression

∣ case x of p → x Case decomposition

∣ πk
i x Projection

∣ r▷ γ Casts

Patterns
p ::= _ Default case

∣ K ∅ _ Matches data constructor

124

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Let-simpliication

he next three transformations ensure that the body of a let-expression is a local vari-
able reference, and none of the bound-expressions are themselves a let-expression.
he irst transformation, bodyVar, ensures that the (representable) body of a let-
expression is always a local variable reference. We have already seen the second
transformation, LetCast, in the non-representable value elimination pass. It en-
sures that casts are propagated towards the body of a let-expressions, and is needed
for the third rewrite rule to ire. he third transformation, LetFlat, inally ensures
that nested let-expressions are turned into a single let-expression.

BodyVar

let x ∶ σ ≙ u in e Preconditions: e /≙ x

let {x ∶ σ ≙ u, xn+1 ∶ τ ≙ e} in xn+1 Deinitions: τ = TYPEOF(e)

LetCast (let x ∶ σ ≙ u in e)▷ γ

let x ∶ σ ≙ u in (e▷ γ)

LetFlat let {b1 ; ...; b i−1 ; x i ∶ σi ≙ let x ∶ σ ≙ u in e i ; b i+1 ; ...; bn} in u

let {b1 ; ...; b i−1 ; x ∶ σ ≙ u; x i ∶ σi ≙ e i ; b i+1 ; ...; bn} in u

he above three transformations are applied using a single bottom-up traversal.
he inal rewrite rule, TopLet, ensures that the expression following the top-level
term-abstractions is always a let-expression. As we did for EtaExpand, TopLet is
applied in a top-down traversal until the sub-expression no longer has a function
type.

TopLet e Preconditions: (e /≙ let y ∶ σ in z) ∧ (τ /≙ σ → τ′)

let {x ∶ τ ≙ e} in x Deinitions: τ = TYPEOF(e)

We inally arrive at the grammar given in igure 4.17.

Remaining casts

When looking at the last grammar given in igure 4.17, it almost matches the gram-
mar in igure 4.15, with the exception of the casts. Coercions witness a non-syntac-
tical equality between types. Consequently, both the coerced and uncoerced value

125

4.
4
ś
D
is
c
u
ss
io
n

t ::= λ(x ∶ τr).let y ∶ τr ≙ r
+
in y j Top-level function

r ::= x Local variable reference

∣ f x Saturated top-level function

∣ K τr ∅ x Saturated data constructor

∣ ⊗ x Saturated primitive

∣ case x of p → y Case decomposition

∣ πk
i x Projection

∣ r▷ γ Casts

p::= _ Default case

∣ K ∅ _ Matches data constructor

Figure 4.17 ś System FC in (almost) Normal Form

will have the same bit-encoding. Hence, during the translation to netlist, the casts
are ignored.

4.4 Discussion

4.4.1 Properties of the normalisation phase

We have proven that the pass of the normalisation phase which removes non-re-
presentable values from the function hierarchy is complete. hat is, given only
minor restrictions, it reduces the function hierarchy that contains polymorphic
and higher-order functions to a completely monomorphic and irst-order func-
tion hierarchy. Also, every bound variable, and every argument to a function or
primitive is representable.

We have also shown that the unconstrained TRS is prone to non-termination, and
requires a speciic strategy, and certain termination measures, to actually termi-
nate in the presence of recursion. here is, however, no proof that this pass of
the normalisation phase terminates. We want to sketch our case that there is a
strong indication that the CλaSH compiler actually terminates in the presence of
unbounded recursion:

ż Local recursive functions are always lited to global functions by LiftNon-
Rep.

ż hose transformations that have the potential to induce non-termination,
InlineNonRep and the specialisation transformation, are equipped with
termination measures that limit their number of applications on the same
function.

126

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

ż here is no transformation in the set of propagation transformations where
the resulting expression of one transformation is the matching expression
of another.

Additionally we want to state that in years of use of the CλaSH compiler there has
been no report of non-termination5.

he same statement holds for completeness of the simpliication pass or normali-
sation. In our experience, the CλaSH compiler always reduces expressions to the
desired normal form6. We also want to state that the expression that is the result of
the irst pass of normalisations, non-representable value elimination, would already
be in a state in which it can be synthesized to a netlist. It would, however, not be as
trivial as it is in the case of our normal form.

4.4.2 Correspondence operational semantics and netlists

he operational semantics of System FC (as given in appendix C) is a call-by-name
semantics, where the arguments to a function are not evaluated before the function
is called. In a circuit as derived by TCλ , all circuits are operating simultaneously.
Under the assumption that the primitives are free from side-efects, the behaviour
of the circuit follows the behaviour as derived from the operational semantics,
even in the presence of non-termination. Given the constant function on integers,
const = λx: Int . λy: Int .x, the program, main = const 3 (let x : Int = x in x),
will reduce to the following normal form:

1 const = λx.λy. let z : Int = x in z
2 main = let x : Int = x
3 k : Int = 3

4 z : Int = const k x
5 in z

which reduces to 3 according to the operational semantics, even though const’s
second argument is non-terminating. he actual circuit will have a component
corresponding to const where the irst port is connected to a bundle of wires rep-
resenting the literal 3, and the second argument is connect to a combinational
feedback loop. he const component will, however, route only its irst input to
the output, and its second input is not even connected. Consequently, the circuit
produces the constant value 3. Although we have only described the static case, the
same holds for the dynamic case. When the input port of a component is connected
to a combinational feedback loop (a non-terminating expression in System FC),
but the computation is not dependent on this input, the circuit connected to the
output is in no way inluenced by the feedback loop.

he same reasoning applies to the parallel translation of case-decompositions and
let-expressions. Even though some circuit paths are performing computations on

5Excluding incompleteness or non-termination due to incorrect implementation of the theory.
6See footnote 5.

127

4.
4.
3
ś
R
ec

u
r
si
v
e
d
es
c
r
ip
t
io
n
s

nonsensical values, as those alternatives would not have been evaluated in the
sequential case, the generated multiplexer will only select the output of the circuit
path that corresponds to the evaluation of the chosen alternative. he circuits
calculating nonsensical values have no inluence on the behaviour of the other
circuit paths, or of the multiplexer. he translations is hence functionally correct.
From a energy performance perspective it might, however, be preferable to actually
turn of the circuit paths corresponding to the non-chosen alternatives.

In the above, and in the actual CλaSH compiler, we assume that all primitives are
side-efect free. In the presence of side-efects our translation would be incorrect,
as side-efects would be performed eagerly and resources associated with the side-
efect would have to be duplicated. To solve the problem of eagerly evaluating side-
efects, wewould have to add handshake synchronisation for every data-channel, by
which a circuit can indicate that it wants the side-efect performed and a response by
which the circuit knows that the side-efect is inished. Solving the implicit resource
duplication problem (e.g.the impossible duplication of a VGAmonitor) is far more
diicult, and would require adding scheduling logic. Concluding, side-efecting
primitives do not it in our view of seeing function descriptions as a structural
composition of components.

4.4.3 Recursive descriptions

A feature notably lacking from our normalisation phase is the normalisation and
unrolling of bounded recursive functions. he actual implementation of theCλaSH
compiler includes additional transformations which:

ż Inline closed constructor applications.

ż Evaluate closed primitive applications, using a δ-reduction.

ż Specialize functions on closed constructor applications.

In combination with the CaseCon, the above set of transformations can unroll
rudimentary recursive descriptions by creating successive specialised functions.
his is, by far, not enough to unroll all bounded recursive functions.

At the moment, this lack of support for bounded recursive functions is amortised
by marking the higher-order functions over vectors, such asmap and foldr, as prim-
itives. Just as for any other primitive, the CλaSH compiler has special translation
logic for these primitives. his has, however, violated the conditions of our system
as described in this thesis that primitives:

ż Are monomorphic.

ż Only operate on data types as arguments.

ż hat the arguments of primitives must be representable.

We want to note that they are only considered primitive for synthesis, but not
for execution within the Haskell interpreter. Although we have only proven that

128

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

our TRS reduces a description to normal form when primitives have representable
arguments, the compiler actually reduces descriptions to a normal form almost
identical to the one presented in this thesis, with the exception that primitives have
non-representable arguments. Primitives may, however, not have non-representa-
ble results, as they do not have deinitions that can be inlined. As future work we
should hence revisit our completeness proofs with less conservative restrictions on
primitives.

4.5 Conclusions

he CλaSH compiler uses a synthesis scheme, TCλ , that produces a description that
has speciic normal from. One aspect of this normal form is that arguments and
results of expressions have types for which a ixed bit-encoding exists. For TCλ ,
non-representable values are those values for which no ixed bit-encoding can be
determined.

Given only minor restrictions the TRS presented in this chapter removes all non-
representable values from a function hierarchy while preserving:

ż he behaviour.

ż he original function hierarchy, where possible.

ż Sharing, where possible.

hese restrictions are that:

ż hemain function is monomorphic.

ż he arguments and the result of themain function are representable.

ż he arguments and result types of primitives are representable types.

hese restrictions do, however, not limit the use of polymorphism or higher-order
functionality in the rest of the description.

4.5.1 Future work

he two big features that are currently lacking from our synthesis approach are:

ż Support for unrolling bounded recursion.

ż Support for GADTs as arguments and result ofmain.

At the moment, GADTs are considered non-representable because of their exis-
tential coercion arguments. GADTs can therefore not be arguments or results to
main. Support for GADTs at the root of the function hierarchy will also enable
more unfolding of bounded recursive descriptions.

129

4.
5.
1
ś
F
u
t
u
r
e
w
o
r
k

Extending support for GADTs

he problem with supporting GADTs as arguments to, and result of,main, is that
they have existential arguments. hese existential arguments cannot be projected
and let-bound outside of the case-decomposition. We can hence not reach our
desired normal formwhere case-decompositions are in administrative normal form
(ANF).

here are, however, cases where we can imagine a transformation that eliminates a
case-decomposition on aGADTwhile the constructor is not yet known. We present
two such cases, the irst one uses the example that we used earlier to explainGADTs:

1 MkI : ∀ a :*. ∀ c :a~Int → Int → T a
2 MkB : ∀ a :*. ∀ c :a~Bool → Bool → T a
3

4 f = Λa :*.λx:a .λds :T a . case ds of
5 MkI (dt :a~Int) (j : Int) → ((x ▷dt) + j) ▷sym dt
6 MkB (dt:a~Bool) (b : Int) → ((x ▷dt) && b)▷sym dt
7

8 main = f Int

Ater specialising f on Int, and propagating the type application, we get a f ′ that
looks like:

1 f ’ = λx: Int . λds :T Int . case ds of
2 MkI (dt : Int~Int) (j : Int) → ((x ▷dt) + j) ▷sym dt
3 MkB (dt: Int~Bool) (b : Int) → ((x ▷dt) && b)▷sym dt

Now we have one alternative with a coercion variable that states a tautology, Int ∼
Int, and another alternativewith a coercion variable that states a contradiction, Int ∼
Bool. here is no safe way to construct a coercion that witnesses a contradiction,
so we can prune the respective alternative, leaving only the alternative with the
tautology.

1 f ’ = λx: Int . λds :T Int . case ds of
2 MkI (dt : Int~Int) (j : Int) → ((x ▷dt) + j) ▷sym dt

We can now almost use a combination of the CaseCon and AltANF transforma-
tion to eliminate the case-decomposition. he remaining problems are the refer-
ences to the coercion variable dt in the expression. We can, however, safely replace
this coercion variable with another coercion that witnesses Int ∼ Int, the relexivity
coercion: ⟨Int⟩:

1 f ’ = λx: Int . λds :T Int . case ds of
2 MkI (dt : Int~Int) (j : Int) → ((x ▷⟨ Int ⟩) + j) ▷sym ⟨Int ⟩

Now using AltLet, followed by CaseCon, we get:

130

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

1 f ’ = λx: Int . λds :T Int .
2 let j : Int = π1

1ds
3 x ’ : Int = ((x ▷⟨ Int ⟩) + j) ▷sym ⟨Int ⟩
4 in x ’

Where there are no more references to existential arguments of the constructor
MkI.

Unfolding vector operations he next example is one that ties into unfolding of
bounded recursive descriptions. We deine, the constructors for the Vec type, the
map function on vectors, and amain function that maps (+1) over a vector of four
integer:

1 Nil : ∀ n :Nat.∀ a :*. ∀ c :n~0→ Vec n a
2 Con : ∀ n :Nat.∀ a :*. ∀ n1:Nat.∀ c :n1+1~n→ a → Vec n1 a → Vec n a
3

4 map = Λa:*.Λb:Int .Λn:Nat.λf :(a → b) . λxs :Vec n a . case xs of
5 Nil (dt :n~0) →
6 (Nil 0 b ⟨0⟩) ▷ (⟨Vec⟩ (sym dt) ⟨b⟩)
7 Cons (n1:Nat) (dt :n~n1+1) (x:a) (xs :Vec n1 a) →
8 (Cons (n1+1) b n1 ⟨n1+1⟩
9 (f x)

10 (map a b n1 f xs)
11) ▷ (⟨Vec⟩ (sym dt) ⟨b⟩)
12

13 main = map Int Int 4 (+1)

Ater one round of specialisation ofmap on its type and function arguments, and
subsequently further propagation of these arguments, we get a new version,map’:

1 map’ = λxs :Vec 4 Int . case xs of
2 Nil (dt :4~0) →
3 (Nil 0 Int ⟨0⟩) ▷ (⟨Vec⟩ (sym dt) ⟨ Int ⟩)
4 Cons (n1:Nat) (dt :4~n1+1) (x: Int) (xs :Vec n1 Int) →
5 (Cons (n1+1) Int n1 ⟨n1+1⟩
6 ((+1) x)
7 (map Int Int n1 (+1) xs)
8) ▷ (⟨Vec⟩ (sym dt) ⟨ Int ⟩)

131

4.
5.
1
ś
F
u
t
u
r
e
w
o
r
k

Again, we have an alternative with a contradiction (4~0) that we can prune:

1 map’ = λxs :Vec 4 Int . case xs of
2 Cons (n1:Nat) (dt :4~n1+1) (x: Int) (xs :Vec n1 Int) →
3 (Cons (n1+1) Int n1 ⟨n1+1⟩
4 ((+1) x)
5 (map Int Int n1 (+1) xs)
6) ▷ (⟨Vec⟩ (sym dt) ⟨ Int ⟩)

Next comes the rather big step, which will requires a better formalisation in order
to guarantee a correct transformation.

ż Because +1, in the coercion dt :4~n1+1, is an injective type function, we can
calculate that n1must be 3.

ż We can subsequently replace every occurrence of n1 by 3.

ż he coercion variable then witnesses dt :4~3+1, which, ater normalisation
of the type function (+) becomes dt :4~4.

ż We can then replace ever reference to the coercion variable dt by the coer-
cion ⟨4⟩.

As a result we will get:

1 map’ = λxs :Vec 4 Int . case xs of
2 Cons (n1:Nat) (dt :4~4) (x : Int) (xs ’: Vec 3 Int) →
3 (Cons (3+1) Int 3 ⟨3+1⟩
4 ((+1) x)
5 (map Int Int 3 (+1) xs)
6) ▷ (⟨Vec⟩ (sym ⟨4⟩) ⟨ Int ⟩)

We can now apply AltLet, followed by CaseCon, to get:

1 map’ = λxs :Vec 4 Int .
2 let x = π2

1 xs
3 xs = π2

2 xs
4 x ’ = (Cons (3+1) Int 3 ⟨3+1⟩
5 ((+1) x)
6 (map Int Int 3 (+1) xs)
7) ▷ (⟨Vec⟩ (sym ⟨4⟩) ⟨ Int ⟩)
8 in x ’

132

C
h
a
pt
er

4
ś
T
y
pe-D

ir
ec

t
ed

Sy
n
t
h
esis

Ater a inal specialisation ofmap we end up with:

1 map’ = λxs :Vec 4 Int .
2 let x = π2

1 xs
3 xs ’ = π2

2 xs
4 x ’ = (Cons (3+1) Int 3 ⟨3+1⟩
5 ((+1) x)
6 (map’’ xs)
7) ▷ (⟨Vec⟩ (sym ⟨4⟩) ⟨ Int ⟩)
8 in x ’

his line of specialisations will continue until the second alternative will witness
the contradiction, dt :0~n1+1, where no such natural number n1 exists.

Unrolling bounded recursion

In the discussion, section 4.4, we already indicated that the CλaSH compiler un-
rolls very rudimentary form of bounded recursion. A small extension to the current
techniques implemented in the compiler is to not only inline, and specialise on, clo-
sed constructor applications, but also constructors applications that are not closed.
Once our description is already in its normal form, inlining constructor applica-
tions does not result in loss of sharing, as all computations are already let-bound.
Using the techniques in the previous subsection will also enable unrolling bounded
recursive descriptions operating on vectors.

A problem with unfolding bounded recursive descriptions, is that it is not just sim-
ply inlining recursive function calls. We must also, in some cases, inline functions
that form the subject of a case-decomposition containing the recursive function
calls. Determining whether a function must be inlined will then suddenly start
to depend on a lot of context, and that is diicult to capture in our term rewrite
system (TRS). Simply inlining all function deinitions is not desirable as we want
to preserve our function hierarchy as much as possible. It might additionally lead
to loss in sharing.

Challenges for future work are thus:

ż To ind local metrics to determine whether a function should be inlined for
the purpose of unrolling bounded recursive descriptions.

ż Deine a partial inlining procedure that preserves sharing.

ż Prove that the method for unrolling bounded recursive descriptions will
always lead to a non-recursive normal form.

133

134

135

5
Advanced aspects of

circuit design in CλaSH

Abstract ś Even when descriptions use high-level abstractions, the CλaSH
compiler can synthesize eicient circuits. Case studies show that circuits de-
signed in Haskell, and synthesized with the CλaSH compiler, are on par with
hand-written VHDL, in both area and gate propagation delay. Even in the pres-
ence of contemporary Haskell idioms and abstractions to write imperative code
(for a control-oriented circuit) does the CλaSH compiler create results with
decent non-functional properties. To emphasize that our approach enables
correct-by-construction descriptions, we demonstrate abstractions that allow
us to automatically compose components that use back-pressure as their syn-
chronisation method. Additionally, we show how cycle delays can be encoded
in the type-signatures of components, allowing us to catch any synchronisation
error at compile-time.

5.1 Introduction

he previous two chapters introduced the ideas behind designing synchronous
circuits in Haskell, and synthesising these descriptions to a netlist. Chapter 3 in-
troduced some small examples, but mainly to demonstrate the ideas behind the
techniques to design circuits. he CλaSH compiler has, however, been used for
much larger designs. It has been used to create various DSP circuits: such as il-
ter banks [73], particle ilters [71][CB:11], spectral estimation techniques [36], a
model of the human cochlea [66], and stencil computations [72]. Additionally, the
use of higher-order functions to make correct-by-constructions trade-ofs between
a space/time unrolling of computations, and subsequent mapping to circuits, is

Parts of this chapter have been published in [CB:7] and [CB:9].

136

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

explored in [39, 70]. Finally, CλaSH has also been used to design a many-core
processor architecture that is based on data-low principles [48][CB:3].

here are hence many existing examples of using CλaSH for circuit design, and
the use of higher-order to make design trade-ofs. he purpose of this chapter
is therefore not to give an overview how CλaSH can be used for circuit design in
general. Instead, it will focus on some of themore advanced aspects of circuit design
in CλaSH.

As an introduction, the next section will describe the design of a medium sized
circuit, a streaming reduction circuit [18], which is still designed in terms of ordi-
nary function composition. Ater that, we move on to describing the larger CλaSH
demonstrator circuit, where we use two aspects that are novel in terms of synthesis-
able circuit design in Haskell (compared to e.g. [26]): multiple clock domains, and
the use of monads to describe imperative, control-oriented, circuits. he last two
sections will focus on the correct-by-construction composition of circuits, where
one section will use higher-order functions to compose circuits that use back-pres-
sure, and the other section will use type-level functions and numbers to statically
enforce correct synchronisation.

5.2 Streaming reduction circuit

When solving the matrix equation Ax ≙ b for a big sparse matrix A, one oten uses
the conjugate gradient algorithm [61]. A core operation of the conjugate gradient
algorithm is a sparse matrix-vector multiplication (SMxV), which we can perform
by taking the dot product for every row in the matrix. For an SMxV the number of
multiplications and additions required for an elements in the result vector depends
on the number of non-zeros in the respective row of the matrix. Working with
loating pointer numbers, the multiplication and addition operations are oten
pipelined in order to achieve reasonable operating frequencies.

In a pipelined arithmetic logic unit (ALU), a new operation can be scheduled every
cycle, but it will take several cycles before the calculated result exits the pipeline. We
demonstrate this behaviour in igure 5.1, where an addition is scheduled every cycle.
For demonstrative purposes, in our notation the addition takes place immediately,
and the result will then propagate through the pipeline.

As part of the dot product, we will have to sum all the numbers in a row of a matrix.
Summing all elements in a row using a pipelined adder is, however, more complex
than it is when using a non-pipelined adder. Assume for instance that we want to
sum three values in a row using a 14-stage pipelined adder. Adding the irst two
values is trivial, ater that we will have to wait 14 cycles before the result of this
addition can be added to the third value. While we wait, however, there may be
values from other rows that also need to be summed. We hence desire to schedule
the pipeline so that it can reduce multiple rows simultaneously, of course, without
accidentally summing values from diferent rows.

137

5.
2
ś
St
r
ea

m
in
g
r
ed

u
c
t
io
n
c
ir
c
u
it

a + b

a + b

a + b

a + b

a + b

c + d

c + d

c + d

c + d

e + f

e + f

e + f

g + h

g + h

i + j

a b c d e f g h i j

Figure 5.1 ś Pipelining, 5 consecutive clock cycles

Circuits which can process variable length rows of loating point values are called
reduction circuits. he diiculty in designing these reduction circuits can be at-
tributed to the pipelining of the loating point operators, and that rows can have
varying lengths. he advantages and drawbacks of various design approaches fall
outside the scope of this thesis, for that we refer the reader to [CB:9] and [18].

he work by Gerards et al. [18] introduces a streaming reduction circuit, together
with an algorithm to route appropriate inputs to the pipelined operator. he pipeli-
ned operator, with α pipeline stages, will be calledPα . In this circuit, values appear
sequentially at the input, where each value is a tuple of a loating point number and
a row index. Since partially reduced values coming out of the pipeline will have
to reduced further, we need to store them in the partial result bufer (denoted by
R). When two partially reduced results enter the pipeline, the pipeline cannot si-
multaneously reduce values entering the system. We hence need to store incoming
values in a FIFO bufer which we will denote by I .

To determine whether values from the input bufer, from the end of the pipeline,
and/or from the partial result bufer will be used, ive rules are checked. he rules
can determine which values to use, i.e. the top two values from I (denoted as i1
and i2), the output of the adder pipeline (denoted by ρ) or values fromR (denoted
by r). he ive rules, in descending order of priority, are:

1. If there is a value available inR with the same row index as ρ, then these
two values enter the pipeline together.

2. If i1 has the same index as ρ, then i1 and ρ enter the pipeline.

3. If there are at least two elements in I , and i1 and i2 have the same index,
then they enter the pipeline.

4. If there are at least two elements in I , but i1 and i2 have diferent indexes,
then i1 enters the pipeline together with the unit element of the operation

138

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

pipeline

controller resBu�er
discriminator

inputBu�er
di

x

i� i�

δ

a� a�

ρ

r

r
′

new

y

D

I C

Pα

R

Figure 5.2 ś Streaming reduction circuit

dealt with by the pipeline (thus for example, 0 in case of addition, 1 in case
of multiplication).

5. In case there are less than two elements available in I , no elements enter
the pipeline.

Figure 5.2 shows the entire circuit including control signals. he controller, denoted
by C, checks which rule has to be executed. To identify rows within the reduction
circuit, discriminators are used as identiication. Discriminators are assigned to
new rows entering the reduction circuit, and are released when a row is fully re-
duced and leaves the reduction circuit, ater which the discriminator is reused. All
elements of a row have an equal discriminator. Discriminators require less bits than
row indices, as the number of rows within the reduction circuit is bounded, and
thus reduces the amount of memory used by the circuit. he discriminators are
assigned by the discriminator componentD.

Haskell design

We do not elaborate the complete design of the circuit in Haskell as it adds no value
for the narrative, but instead highlight a few aspects. hemain data type within the
circuit is a Cell, which contains both the loating point number and the discrimina-
tor. We see the type deinition, and some helper functions in listing 5.1. We use a
Maybe data type so that we can distinguish between unit elements created internally
(encoded by Nothing), and actual data (encoded by Just). Cells are compared on

139

5.
2
ś
St
r
ea

m
in
g
r
ed

u
c
t
io
n
c
ir
c
u
it

1 newtype Cell = C (Maybe (FPData,Discr))
2

3 instance Eq Cell where
4 (C (Just (_ ,d1))) == (C (Just (_ ,d2))) = d1 == d2
5 _ == _ = False
6

7 valid :: Cell → Bool
8 valid (C (Just _)) = True
9 valid _ = True

Listing 5.1 ś Reduction circuit, data type deinitions

1 controller = unbundle . fmap controllerT . bundle
2

3 controllerT (i1 , i2, ρ , r) =
4 (a1, a2, δ , r ’)
5 where
6 (a1, a2, δ , r ’)
7 | ρ == r = (ρ , r , 0 , C Nothing)
8 | ρ == i1 = (ρ , i1 , 1 , C Nothing)
9 | i1 == i2 = (i1 , i2 , 2 , ρ)

10 | valid i1 = (i1 , C Nothing , 1 , ρ)
11 | otherwise = (C Nothing , C Nothing , 0 , ρ)

Listing 5.2 ś Reduction circuit, controller

their discriminator, so we deine the Cell data type as a newtype wrapper¹ so that
we can deine a new Eq instance.

We can now straightforwardly implement the controller as shown in listing 5.2,
where i1 and i2 are the two elements from the inputbufer, ρ is the output of the
pipelined operation, and r the output from the partial result bufer. he outputs a1
and a2 are the two arguments for the pipelined operator, δ determines how many
values should be shited out of the input FIFO bufer, and r′ determines what value
should be stored in the partial result bufer.

he controller is the only high-level combinational component in the reduction
circuit, the other components are all sequential circuits. We model them using the
Mealymachine abstraction discussed in chapter 3. One example is the discriminator
(D), which hands out new discriminators to the system, based on whether a new
row index appears at the input. he code for this circuit is shown in listing 5.3. It

1We do not create a completely new data type so that we may use existing functions forMaybe.

140

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 discriminator = discriminatorT ⟨^⟩ (maxBound,maxBound)
2 where
3 discriminatorT (prevIndex , discr) index = ((index , discr ’)
4 , (newDiscr , discr ’))
5 where
6 newDiscr = index /= prevIndex
7 discr ’ | newDiscr = discr + 1

8 | otherwise = discr

Listing 5.3 ś Reduction circuit, discriminator

1 rc op (x , i) = y
2 where
3 (new,d) = discriminator i
4 (i1 ,i2) = inputBufer (x ,d ,δ)
5 ρ = pipeline op (a1,a2)
6 (r ,y) = resBufer (new,d , i ,ρ ,r ’)
7 (a1,a2,δ,r’) = controller (i1 ,i2,ρ,r)

Listing 5.4 ś Reduction circuit

uses the ⟨^⟩ combinator to combine the transfer function and the initial state of
the circuit.

We connect all the components to form the complete reduction circuit using the
code shown in listing 5.4. he loating point operator op is passed as a parameter to
the reduction circuit, making the implementation generic for all kinds of pipelined
reduction operations. he pipeline component (or function) requires a result from
the controller, while the controller requires a result from pipeline, i.e. the functions
depend on each other’s results. In igure 5.2, this is shown using the signals ρ, a1
and a2. hese same signals are shown in listing 5.4. he result produced by the
pipeline (ρ) does, however, not depend on the value produced by the controller
(a1 and a2) within the same clock cycle. he output ρ is directly derived from the
state of the pipeline, and not the inputs of the pipeline. Haskell’s lazy evaluation
will hence ensure that there are no problems with simulating this circuit. As the
feedback loop contains delays, the resulting hardware will also exhibit the expected
synchronous behaviour.

Table 5.1 displays the design characteristics of both the CλaSH design and a hand-
optimized VHDL design where the same global design decisions are applied to
both designs. Both designs are synthesized, with the Xilinx tools, for the Xilinx
Virtex-4 4VLX160FF1513-10 FPGA. he igures in the table show that the results
are comparable. he VHDL design is faster (and bigger) due to a higher degree of
pipelining.

141

5.
3
ś
C
λ
a
SH

d
em

o
n
st
r
at

o
r
c
ir
c
u
it

Table 5.1 ś Design characteristics of the streaming reduction circuit

CλaSH VHDL

CLB Slices & LUT 4076 4734

Dfs or Latches 2467 2810

Operating Frequency (MHz) 159 171

Lines of code 211 748

5.3 CλaSH demonstrator circuit

With the intent to show that Haskell, in combination with the CλaSH compiler,
can be used as a general purpose HDL, we build a demonstrator circuit for presen-
tation at a large conference [14]. For our FPGA platform we used the Terasic/Al-
tera DE1 Development and Education board, which contains an Altera Cyclone II
EP2C20F484C7 FPGA. he circuit is able to:

ż Control an audio chip via the I2C protocol.

ż Communicate with an audio chip to acquire audio samples from the line-in,
and send audio samples to a speaker over the line-out.

ż Read scancodes from a PS\2 keyboard, which are synthesized to an appro-
priate sine-wave and send to the speakers.

ż Mix the audio samples from the line-in and the tones synthesised from the
keyboard scancodes.

ż Apply low- or high-pass iltering over the mixed audio samples using a 17-
tap FIR ilter.

ż Analyse the spectrum of the iltered audio samples using an fast fourier
transform (FFT).

ż Display the audio spectrum on a VGAmonitor, with time on the horizontal
axis, frequency on the vertical, and colours indicating the energy.

A schematic overview of the circuit is presented in igure 5.3. Groups of components
run at diferent clock frequencies, these clock domains are highlighted by colour-
accented blocks in the diagram. Most of the components run at the system clock
(red) of 50MHz. As proper timing is important for distortion-free audio, the audio-
chip runs in master mode, meaning it is in control of all its clocks. he audio
interface, mixer, and FIR ilter are hence synchronised to bit sample clock (12MHz)
provided by the audio chip (blue). he FFT requires its own clock (green) as the
longest combinational path in the FFT design only allowed a clock frequency of
10 MHz. It only runs at 10 MHz because the main FFT datapath is completely
combinational, but it is fast enough for processing our audio samples (a sample
rate of 44 KHz). So instead of pipelining, running the FFT in its own clock domain
was an appropriate solution.

142

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

KBread

sinegen mixer

FIR

I
�
C AudioIF

VGActrl

AudioCtrl

FFT

SRAMctrl

Audio Chip

Monitor

Keyboard

SRAMSeg. Disp Switch

line-in line-out

control audio in audio out

�� MHz

�� MHz

�� MHz

Figure 5.3 ś Demonstrator circuit

We will not elaborate the design of every component, but will instead focus on the

most control-oriented circuit, the I2C bus controller. he I2C protocol is a simple

serial bus protocol that allowsmultiplemasters and slaves on a single bus. Although

there was only one master, the FPGA, and one slave, the audio chip, we nonetheless

designed a complete I2C controller. We modelled our design of the I2C controller

ater an existing design [30] by RichardHerveille written inVHDL.he inal design
is feature compatible, modulo WISHBONE [50] compatibility, with the design by
Richard Herveille.

Such features include:

ż True multi-master operation, including collision detection and arbitration,
that prevents data corruption when two or more masters try to control the
bus.

ż Clock stretching, by using the bus clock synchronisation mechanism, slave
devices can slow down the transfer rate of the master, thus inserting wait-
states.

ż Communication of the bus status to a client of the I2C controller, such as
whether there is traic on the bus, or arbitration is lost.

he I2C controller is very much a control-oriented circuit, and needs to store many
pieces of information. Due to its control-oriented nature, many of its operations are

143

5.
3
ś
C
λ
a
SH

d
em

o
n
st
r
at

o
r
c
ir
c
u
it

Monads

Although the name and conceptmonad originate from category theory [40],
we will elaborate the concept from a circuit designers point of view. A monad
is a structure that expresses computation as a sequence of steps. In Haskell
this gives rise to theMonad type class:

1 class Monadm where
2 return :: a → m a
3 (>>=) :: m a → (a → m b) → m b

where the return function puts a value in the computational structure, and
>>= (pronounced bind) is the sequential composition of two structures. Using
the do notation we do not have to explicitly write our programs in terms of
>>=, but the compiler will desugare it for us. he program:

1 f x = do
2 y <− g x 3

3 z <− h x y
4 return (z + 1)

is desugared to:

1 f x = g x 3 >>= (λy → h x y >>= (λz → return (z + 1)))

State monad he state monad is a computational structure, where compu-
tations are executed in sequence, and a global state is threaded through each
of these computations. Its type andMonad instance are:

1 type State s a = s → (a , s)
2

3 instance Monad (State s) where
4 return x = λs → (x , s)
5 (State m) >>= k = λs → let (x , s ’) = m s in (k x) s ’

where we see that every computation can update the state, and pass the up-
dated state to the next computation. Using the state monad operations get and
put we can then describe an incrementing counter as:

1 counter = do
2 cnt <− get
3 put (cnt + 1)
4 return cnt

144

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

Lenses

Lenses are a recent idiom in Haskell for declaring how to focus deeply into

a data structure, whether it be for viewing or updating. In this thesis we use

them mainly to conveniently access ields in a record.

Given a record data type:

1 data ShitRegister = SR { _sr :: BitVector 8 , _dcnt :: Index 8 }

to represent the state of a shit register in terms of its data, and the number of

valid elements. We will use Template Haskell [28] to create two lenses, sr and
cnt, to focus into the respective ields of our data structure.
he strength of lenses is, for a large part, deined by the set of combinators
to manipulate data in terms of lenses. For example, lets say that we want to
decrement our _dcnt ield within a state monad. Using normal record syntax
we would have to write:

1 s@(SR { _dcnt = x}) <− get
2 put s {_dcnt = x − 1}

while with lenses and the −= combinator we can just write:

1 dcnt −= 1

which is far more self-explanatory.

not algebraic manipulations of data, but controlling the low of data through choice
structures (e.g. case-expressions). Additionally, inmany situations only parts of the
state of the circuit need to be updated, while others can be let as is. Sometimes, we
also want to assign a certain default value to the state, and only overwrite this state
in certain situations. We thus need a way to deal with both selective and destructive
updating of the complete state of the circuit.

We use the state monad [51] to model a function with a global, updatable state, and
use a concept called lenses [37] to perform selective updates. As we will see, these
two concepts give an imperative feel to our implementation, which works well for
control-heavy circuits. Note that we still use the Mealy machine abstraction to
actually create the registers, we use the state monad to describe the combinational
part. his means we have full control over where registers will be placed, and hence
the cycle delays of our circuit.

In listing 5.5 we see the deinition of a shit register, which is used inside the I2C
controller. he shit register is used to both write a word bit-by-bit, and read a
word bit-by-bit. On the irst line we deine a new data type SR which describes the
state of the shit register: the register content _sr , and the number of valid elements

145

5.
3
ś
C
λ
a
SH

d
em

o
n
st
r
at

o
r
c
ir
c
u
it

1 data ShitRegister = SR { _sr :: BitVector 8 , _dCnt :: Index 8}
2

3 $(makeLenses ’’ShitRegister) −− generate lenses
4

5 shitRegister :: Bool → Bool → BitVector 8 → Bit
6 → State ShitRegister (BitVector 8 ,Bool)
7 shitRegister ld shit dIn coreRxd = do
8 −− get the current state
9 (SR {..}) <− get

10 −− shit register
11 if ld then
12 sr .= dIn
13 else when shit $
14 sr %= (<<# coreRxd)
15 −− data−counter
16 if ld then
17 dCnt .= 7

18 else when shit $
19 dCnt −= 1

20 −−When writing: bit to send , remaning bits , inished writing
21 −−When reading: N/A, word read , inished reading
22 return (msb _sr , _sr ,_dCnt == 0)

Listing 5.5 ś Shit register

in the register _dcnt. When the shit register is used for writing values bit-by-bit,

_dcnt represents the number of bits that still need to be written. When the shit

register is used for reading in values bit-by-bit, _dcnt represents the number of bits
that still need to be read. On line 3 we have the compiler generate, using Template
Haskell [28], two lenses, sr and dnt, which can peer into the ields of the SR data type.
hese lenses will allow us to succinctly update only parts of the state of the shit
register. We now move on to our monadic implementation of the shit register. On
line 9 we get the current state of the shit register, which brings two new variables
into scope: _sr representing the current register content, and _dcnt representing
the current data counter. On lines 11 to 14 we update the contents of our register.
On line 12 we overwrite the register contents with our data input dIn, using the
(.=) operator, when the load lag (ld) is asserted. On line 14 we modify, using the
(%=) operator, the register content by shiting in the coreRxd input from the right.
On lines 16 to 19 we update the value of our data counter. When the load new value
signal (ld) is asserted, we reset the counter to 7 (line 17). When we are shiting (the
shit signal is asserted), we decrement our data counter by 1 using the (−=) operator
(line 19).

146

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 shit .= False
2 ld .= False
3 hostAck .= False
4

5 case _cState of
6 Idle → when go $ do
7 if startCmd then do
8 cState .= Start
9 coreCmd .= I2C_Start

10 else if readCmd then do
11 cState .= Read
12 coreCmd .= I2C_Read
13 else if writeCmd then do
14 cState .= Write
15 coreCmd .= I2C_Write
16 else do
17 cState .= Stop
18 coreCmd .= I2C_Stop
19 ld .= True
20 Write → when coreAck $ do
21 if cntDone then do
22 cState .= Ack
23 coreCmd .= I2C_Read
24 else do
25 cState .= Write
26 coreCmd .= I2C_Write
27 shit .= True
28 Read → when coreAck $ do

Listing 5.6 ś I2C controller, excerpt

Other parts of the implementation of the I2C controller follow the same idiom:

ż We irst acquire the current value of the state; the individual parts of the

current state are referenced by variables starting with an underscore.

ż We subsequently update parts of the state using lenses and their associated

combinators.

We still follow the Mealy machine idiom of describing the single cycle behaviour of

our circuits, but we now use imperative(-looking) features of the Haskell language

and its libraries in order to capture the imperative nature of our control-oriented

circuits.

147

5.
3
ś
C
λ
a
SH

d
em

o
n
st
r
at

o
r
c
ir
c
u
it

Table 5.2 ś Design characteristics of the I2C controller

CλaSH VHDL

Logic elements 144 194

Registers 66 100

Operating Frequency (MHz) 279 220

Lines of code 515 579

Table 5.3 ś Design characteristics of the Cordic core

CλaSH VHDL

Logic elements 1026 1060

Registers 695 656

Operating Frequency (MHz) 207 209

Lines of code 53 175

In listing 5.6,we can see an excerpt of the code that is used to implement part of the
I2C controller. he purpose of this listing is to demonstrate the destructive update

of parts of the state, in this case ld and shit. hese two values are used to control

the shit register we discussed earlier. By default, as implemented in line 1 and line
2, we do not want to change the content of the shit register, hence we set ld and
shit to false. However, when we are in the Idle state and the go signal is asserted, we
do want to load in a new value into the shit register. Hence we update the ld with
the value True on line 19. Similarly, when we are in theWrite state, but we have
not shited out all the bits (cntDone is not asserted), then we update shit with the
value True (line 27). We will further discuss this imperative way of writing circuit
behaviour at the end of this chapter.

Table 5.2 displays the design characteristics of both the CλaSH design and the orig-
inal VHDL design [30] on which we based our implementation. he igures in
the table show that the results are comparable. he reason that the VHDL code is
slower is most likely due to the support for both an asynchronous and synchronous
reset, where the CλaSH design can only be reset asynchronously. he higher num-
ber of registers in the VHDL is most likely due to the one-hot encoding used for
the internal state machine and the internal I2C commands, where CλaSH uses a
binary encoding. his also explains the higher number of logic elements, as there
are wider (due to one-hot) and more (due to the synchronous reset) multiplexers.
he purpose of table 5.2 is, however, to show that the use of imperative features did
not negatively impact the performance characteristics of the circuit.

As a inal comparison we show the design characteristics of our CORDIC circuit
in table 5.3. We use the CORDIC algorithm [67] to calculate the sinusoids for our
synthesizer. We compare our design against an existingVHDL implementation [29]
that has the same number of pipeline stages, and same bit-precision. Again we see
that the performance of theCλaSH implementation and theVHDL implementation
are comparable.

148

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

5.4 Correct-by-construction compositions

Having seen that the CλaSH compiler can synthesize circuits that have acceptable
non-functional properties, we will now show how Haskell can aid us in design-
ing circuits that are correct-by-construction. Speciically, we focus on the correct
composition of components. he irst subsection describes how we can use higher-
order functions to compose functions that use back-pressure as their synchronisa-
tion method. he correct-by-construction aspect is that the designer is relieved of
connecting the signals for back-pressure, this is done automatically. he second sub-
section shows how we can annotate components with their cycle delay at the type
level. Here the correct-by-construction aspect is that the type system checks that
compositions are correctly synchronised, i.e., enough registers have been placed
on all the signal paths.

5.4.1 Back pressure

Back-pressure is a synchronisation method between two circuits where:

ż Circuit B receives data from circuit A.

ż Circuit B has a status line connected to circuit A indicating whether it is
ready to receive new data.

ż When this status line is de-asserted, circuit A should remember its output
until circuit B asserts its ready status again.

When circuit A is feeding data to both circuit B and circuit C, and circuit B de-
asserts its ready signal, circuit A should be able to tell circuit C that it cannot
provide new data. In general, we will hence also need a forward synchronisation
method, by which a circuit can assert that its output is new and/or valid.

We model circuits adhering to this synchronisation protocol using the DataFlow
type shown in listing 5.7. It has two inputs, one corresponding to its data input,
and the second input corresponding to the ready signal of the circuit it is sending
data to. It also has two outputs, a data output, and its own ready signal, which will
be connected to the circuit it is receiving data from. he validity signals lowing
forward, and ready signals lowing backward, have the same type, meaning the
granularity of synchronisation matches in both directions.

We can now deine sequential composition of two circuits as the (⋙) operator,
shown in listing 5.8. In both the code and the diagram we can see the mutual
dependency between the function f and g, where g is expecting data from f , and
f will only supply new data when g is ready. he designer must ensure that these
signals do not form a combinational loop within f and g. Using the (⋙) operator,
the designer can never accidentally connect the data ports to the ready ports and
visa versa when composing two circuits.

Aside from sequential composition, we want other compositional forms, such a
parallel composition. We see the type deinitions, and their circuit representation,

149

5.
4.
1
ś
B
a
c
k
pr
es
su
r
e

1 newtype DataFlow iEn oEn i o
2 = DF
3 { df :: Signal (i , iEn) −− data input , with validity lag
4 → Signal oEn −− receiving circuit ready
5 → (Signal (o ,oEn) −− data output , with validity lag
6 , Signal iEn −− circuit is ready
7)
8 }

Listing 5.7 ś Datalow circuits

Back-pressure, sequential composition

1 (⋙) :: DataFlow aEn bEn a b → DataFlow bEn cEn b c
2 → DataFlow aEn cEn a c
3 (DF f) ⋙ (DF g) = DF (λa cEn → let (b ,aEn) = f a bEn
4 (c ,bEn) = g b cEn
5 in (c ,aEn))

Circuit representation

f � g

f

a b c

aEn bEn cEn

g

Listing 5.8 ś Sequential composition of datalow circuits

for these additional composition operators in listing 5.9. Where the parallel com-

position operator, (⋆⋆⋆), can actually be deined in terms of irst, swap, and (⋙):

1 second f = swap⋙ irst f ⋙ swap
2 f ⋆⋆⋆ g = irst f ⋙ second g

Here we can also see why we parametrised the synchronisation signals in the dei-

nition of our DataFlow circuit type, and not ix them to be of type Bool. If we had
ixed our synchronisation signals to Bool, then two circuits composed in parallel
would be forced to operate in lock-step, as there would only be one ready and one

valid signal to connect to both circuits.

150

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

Back-pressure, sequential composition

1 (⋆⋆⋆) :: DataFlow aEn bEn a b → DataFlow cEn dEn c d
2 → DataFlow (aEn,cEn) (bEn,dEn) (a , c) (b ,d)
3

4 irst :: DataFlow aEn bEn a b
5 → DataFlow (aEn,cEn) (bEn,cEn) (a , c) (b , c)
6

7 swap :: DataFlow (aEn,bEn) (bEn,aEn) (a ,b) (b ,a)

Circuit representation

f ��� g

f

a b

c

aEn bEn

cEn

g

d

dEn

f

a b

aEn bEn

�rst f

c

cEn

a
b

aEn bEn

b

bEn

a

aEn

swap

Listing 5.9 ś Parallel composition of back-pressure circuits

Feedback

Wedeine our combinator which adds a feedback arc to a circuit, loop, in listing 5.10.
We see that our valid and ready lags are no longer parametrised in this circuit, but
are ixed to be of type Bool. he reason for that is that we want to ensure that data
lowing to the output, and data lowing through the feedback loop proceed in lock-
step. As we will see below, asserting validity lags and ready lags in the presence
of eager consumers is not trivial. By forcing the designer to create a function that
operates in lock-step, we can guarantee that the feedback loop operates correctly
with respect to our synchronisation protocol.

he implementation of our loop combinator is non-trivial, because our circuits are
deined as eager consumers:

ż When the valid signal is asserted on its input, then a circuit is expecting a
new data input every clock cycle.

he loop combinator must hence ensure that:

ż he input circuit and feedback circuit only produce new data when both the
feedback circuit and output circuit can consume new values. hat means
that all data inputs should be valid, and the consuming circuits should be
ready.

151

5.
4.
1
ś
B
a
c
k
pr
es
su
r
e

Feedback loop combinator

1 loop :: DataFlow Bool Bool (a ,d) (b ,d)
2 → DataFlow Bool Bool a b

Circuit representation

f

a b

ra
rb

d

loop f

1
va

vb
vb�d

ra�d

2

6

5

4

3

Listing 5.10 ś Adding feedback arcs to datalow circuits

ż he feedback circuit and the output circuit only consume new data, when

both can consume new data.

We have annotated the and-gates in listing 5.10 with numbers, so we can refer to
them in the explanation below.

ż he circuit f should only consume new values, when both the incoming
data is valid (va) and the fed back data is valid (vd). But also only when
the output circuit is ready (rb), because the function f can only produce
new values when the output circuit is ready. his logic is implemented by
and-gates 1 and 3.

ż he circuit on the input, providing data input a, should only produce new
values (ra is asserted) when:

ś he circuit f is ready.

ś When the fed back value is valid (vd), because f can only consume
new values when both va and vd are asserted.

ś he circuit on the output is ready (rb), because f can only consume its
fed back value and input value when the output circuit is also ready.

his logic is encoded by and-gates 2 and 3.

ż he circuit f should only produce new data (its incoming ready lag is as-
serted) when:

ś he circuit on the output is ready (rb), and f itself is ready (rd).

152

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 loopNI :: DataFlow Bool Bool d (b ,d)
2 → DataFlow Bool Bool () b
3 loopNI (DF f) = stub ⋙ loop f ’
4 where
5 f ’ = DF (λdin b → let (ud,v) = unbundle din
6 (_ ,d ’) = unbundle ud
7 d = bundle (d ’, v)
8 in f d b)
9 stub = DF (λ_ _ → (pure (True ,()) , pure True))

Listing 5.11 ś Alternative feedback compbinator

ś he data produced by the circuit on the input is valid (va). Because f
can only consume the tuple of a and d simultaneously, f should not
update its fed back data (d) when the other part of the tuple is not
updated.

his logic is encoded by and-gates 5 and 6.

ż he circuit on the output, consuming data output b, should only consume
values (vb is asserted) when:

ś he output from f is valid (vb).

ś he circuit f is ready to consume its fed back result, f cannot update
b and d independently.

ś he data on the input is valid (va). When the data on the input is not

valid, f cannot consume its fed back value, meaning it cannot update
its output tuple.

We encode this logic with and-gates 4 and 6.

he loop combinator is deined in such a way that it takes a function f that con-
sumes both an external input, and a fed back output. We can, however, imagine a

situation where we have a function f that only consumes the fed back input. We

can deine a new combinator, loopNI (loop, no input), in terms of loop that accepts
such functions. he code for this alternative combinator, loopNI, is shown in list-
ing 5.11. he stub function will ignore its input, is always ready, and produces a
constant stream of unit values. he inal synthesis result will therefore no longer

contain and-gates 1, 2, and 6. Gate 2 will be removed because its output is unused,
and gates 1 and 6 will be removed because anding with true is equal to the and’s
second argument.

Manipulating status lags

A component that is oten used in a back-pressure controlled circuit is a FIFO bufer.

Consider a ifo component adhering to our DataFlow type:

153

5.
4.
1
ś
B
a
c
k
pr
es
su
r
e

Parallel and sequential composition

1 main = (ifo ⋆⋆⋆ ifo) ⋙
2 (colDF ⋙ ifo)
3 where

4 colDF = mapDF (uncurry (&&)) dup
5 dup a = (a ,a)

Circuit representation

�fo ��� �fo

�fo

�fo

�fo

(�fo ��� �fo)� �fo

da

ra

db

rb rab

dab

rab

db

da

Listing 5.12 ś Composition of FIFO circuits

1 mapDF :: (ra → rb)
2 → (rb → ra)
3 → DataFlow ra rb a a
4 mapDF f g = DF $
5 λdin rb → let (d , ra) = unbundle din
6 rb ’ = fmap f ra
7 ra ’ = fmap g rb
8 in (bundle ’ (d , rb ’) , ra ’)

Listing 5.13 ś Impedence matching circuit

1 ifo :: DataFlow Bool Bool a a

where the ifo will perform a shit when its input is valid, and when the output is
ready. he ifo will de-assert its ready signal when it is full, and de-assert the valid
signal when it is empty.

We can now compose three FIFOs, two in parallel, composed sequentially with a
third, and have their synchronisation signals connected automatically. he code,

154

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 newtype DSignal (delay :: Nat) a = D { toSignal :: Signal a }
2 deriving (Functor , Applicative ,Num)

Listing 5.14 ś Delay annotated signals

and corresponding circuit interpretation can be seen in listing 5.12. Here we see
that we need an additional function,mapDF. he reason for that is that we need to

correctly match the status signals of two FIFOs in parallel with the third FIFO. he

parallel composition is expecting two ready lags to low backwards, and is ofering

two valid lags in the forward direction. he third FIFO is, however, only ofering

one ready lag, and expecting only one valid lag. Our inal combinator, mapDF
(listing 5.13), can thus performs arbitrary manipulation on the status lags, in order
for the connections such as the above to match up.

hemapDF function is also useful when specifying feedback loops. For example,
we can build a derivative of our loop combinator, one that always adds a FIFO bufer
on the feedback edge:

1 loopFIFO :: DataFlow Bool Bool (a ,d) (b ,d)
2 → DataFlow Bool Bool a b
3 loopFIFO f = loop (f ⋙ dupDF⋙ second ifo ⋙ colDF)
4 where
5 dupDF =mapDF dup (uncurry (&&))
6 colDF = mapDF (uncorry (&&)) dup
7 dup a = (a ,a)

where dubDF duplicates the valid signals lowing forward, and logically and’s the
ready signals lowing backwards. he colDF operates in the opposite direction,
merging the valid signals, and duplicating the ready signals.

5.4.2 Delay annotations

he datalow method described in the previous section is one approach to make
circuit self-synchronising. Such a self-synchronising approach is oten used when
cycle delays of computations are not ixed, i.e., when iteratively calculating a value
until it has a desired property. In other cases, however, diferent paths through
a circuit accumulate distinct delays. When these paths are merged through an
operation, it is oten desired that these path are synchronised, that is, that both
paths have accumulated the same number of delay. In this section we describe
how signals can be annotated with their accumulated delay in their type, and how
composition of functions are only type-correct when the function arguments have
the expected amount of accumulated delay.

he data type deinition of our annotated signal type is given in listing 5.14. he
delay annotation is a phantom type, just as the length annotation on our Vector

155

5.
4.
2
ś
D
el
ay

a
n
n
o
ta
t
io
n
s

1 delay :: Vec d a
2 → Delay (n − d) a
3 → Delay n a
4 delay is (D inp) = D outp
5 where
6 outp = case length is of
7 0 → inp
8 _ → shitRegister is inp

Listing 5.15 ś he delay operator

type. We use natural numbers to encode our delay, meaning that we cannot encode

negative delays, and hence anti-causal systems. Just as we did for our Signal type
declaration in chapter 3, the constructor forDSignal,D, should not be exported. he
circuit designer should only modify these annotated signals through a predeined,
safe, set of functions and operators.

he irst and foremost of these function is the delay function, whose deinition is
given in listing 5.15. his function adds d amount of delay to a signal. he type
signature should be read as: given that we are now at time n (the output), we are
seeing samples from time n − d clock periods ago (the input). Internally this delay
operator is just implemented as a shit register (given that the requested amount of
delay is more than zero). For practical purposes we initialize this register with a set
of given samples, where the number of initial samples is thus equal to the delay d.

With our most important function in place, we can now show how delay anno-
tations enforce proper synchronisation. Our irst example assumes that the type
signature for the function is given:

1 −− (+) :: DSignal k Int → DSignal k Int → DSignal k Int
2 −−

3 −−he following produces a type error :
4 f :: DSignal (n − 1) Int → DSignal n Int → DSignal n Int
5 f a b = a + b −− ’a ’ and ’b ’ are not synchronised

In our example, f expects two integer signals, where the second argument is delayed
by 1 cycle compared to the irst argument. he above speciication would result in a
type error, as the addition operator (+) is expecting its arguments to have the same
amount of delay. We ix our implementation by also delaying the irst argument by
1 cycle:

1 f :: DSignal (n − 1) Int → DSignal n Int → DSignal n Int
2 f a b = delay [0] a + b −− arguments are now synchronised

Also, any function applying f will have to ensure that f ’s second argument is de-
layed by 1 cycle compared to its irst.

156

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 unsafeFromSignal :: Proxy n → Signal a → DSignal n a
2 unsafeFromSignal _ s = D s

Listing 5.16 ś Unsafe delay annotation

Conversion to Signal

As explained earlier, the constructor forDSignal,D, will not be exported, so that the
circuit designer cannot subvert its invariants by accident. Of course, it is imperative
that the designer can place a circuit deined in terms of DSignal, in a larger, less
restricted, circuit deined in terms of Signal. he most straightforward operation is

stripping the signal from its delay information:

1 toSignal :: DSignal n a → Signal a

which is just the ield extractor deined as part of our newtype deinition ofDSignal.

Dropping delay information is always safe, in terms of the invariants implied by the

type ofDSignal. Adding delay information requiresmore careful consideration. he

safest way to add a delay annotation on a normal signal is to add a delay annotation

of zero cycles:

1 fromSignal :: Signal a → DSignal 0 a
2 fromSignal s = D s

his new function will allow a designer to coerce any DSignal to have zero delay by
using: (fromSignal . toSignal) :: DSignal n a → DSignal 0 a. However, as
long aswe annotate functionswith polymorphic delay values, the risks of subverting

the invariants of DSignal are reduced.

Let us assume that a circuit designer wants to use our circuit deined earlier, f ,
within the function g, where g which is deined in terms of Signals. Having only
the fromSignal function available, the second argument of g will have to be explicitly
delayed when applied to f :

1 g :: Signal Int → Signal Int → Signal Int
2 g a b = toSignal (f (fromSignal a) (delay [0] (fromSignal b)))

However, it might be the case that the designer knows that g’s second argument
is actually already delayed by one clock cycle compared to g’s irst argument. In
that case, adding an extra delay to the second argument of f will actually cause the
arguments of f to be improperly synchronised.

We hence need a third conversion function, given in listing 5.16, that allows the
designer to explicitly annotate a signal with its delay. We preix the function with

157

5.
4.
2
ś
D
el
ay

a
n
n
o
ta
t
io
n
s

the word, unsafe, to indicate to the designer that this function has to potential to
subvert invariants of DSignal. Because there is a strict phase distinction between
types and terms, we cannot make a function of the type unsafeFromSignal :: n →
Signal a → DSignal n a, where nwould be both a type and a term. We therefore

use the Proxy data type, which, as the name suggests, acts like a term-level proxy
for the type n. Going back to our example, we can now write g as:

1 g :: Signal Int → Signal Int → Signal Int
2 g a b = toSignal (f (fromSignal a)
3 (unsafeFromSignal (Proxy :: Proxy 1) b))

Unlike the fromSignal function, unsafeFromSignal is able to completely subvert the
invariants of DSignal. hat is, we can redeine f , erroneously, but type-correct, as:

1 f :: DSignal (n−1) Int → DSignal n Int → DSignal n Int
2 f a b = ((unsafeFromSignal (Proxy :: Proxy n) . toSignal) a) + b

he unsafeFromSignal function is hence a truly unsafe operation. Both fromSig-
nal and unsafeFromSignal are, however, needed in order to interact with circuit
speciications that are not annotated with delays.

Feedback

With delays encoded in the types, we can no longer deine feedback using standard

value recursion. For example, using normal Signals, we can describe aMAC circuit:

1 mac x y = acc ’
2 where
3 acc ’ = (x * y) + acc
4 acc = register 0 acc ’

where value recursion is used to model the feedback loop. However, when we try

to the same using DSignal and the delay function:

1 mac x y = acc ’
2 where
3 acc ’ = (x * y) + acc
4 acc = delay [0] acc ’

we get a type error² because delay is expecting acc’ to be of type, DSignal (n−1) a,
however, acc’ is deined in terms of acc, which is of type, DSignal n a. Actually,
the only type-correct feedback loops that we can specify with the operators that we
have seen until now, are the unsound combinational feedback loops.

2Actually, in the polymorphic setting we get a function with an insoluble constraint, n ~ n − 1,
which we cannot solve once we move to a monomorphic setting.

158

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 fb :: Proxy (d + 1)
2 → (DSignal (n − d − 1) a → (DSignal k b , DSignal n a))
3 → DSignal k b
4 fb _ f = let (y ,D x) = f (D x) in y

Listing 5.17 ś Feedback operator

We thus deine a feedback function, listing 5.17, which additionally enforces that
the feedback loop contains at least one delay element. For extra veriication, we
allow the designer to explicitly indicate how much delay the feedback loop must
have. he type signature of the fb function should thus be read as:

ż We want to create a feedback loop which has an internal delay of d + 1.

ż We give a function f , that has an arbitrary delay between its input and irst
output, and d + 1 delay between its input and second output.

ż We feed back the second output of the function to its input, and return its
irst output.

We can now correctly deine ourmac function as:

1 mac :: DSignal 0 Int → DSignal 0 Int → DSignal 0 Int
2 mac x y = fb Proxy $
3 λacc → let acc ’ = (x * y) + acc
4 in (acc ’, delay [0] acc ’)

Note that we do not explicitly have to indicate how much delay our feedback loop
must have. Providing an unannotated Proxy constructor indicates we are content
with any kind of delay. he types will, however, enforce that the feedback loop has
a delay of at least 1.

5.5 Discussion

Designing circuits in Haskell

In chapter 3 we introduced several primitives for designing synchronous sequential
circuits. On top of those primitive we build our Mealy machine abstractions as an
initial step to specify our sequential circuits in a principled manner. In our expe-
rience, designing data-oriented circuits using normal function composition leads
to concise and clear circuit speciications. his holds true for both combinational
circuits, and sequential circuits deined using our Mealy machine abstraction. In
this chapter we have also seen, in the top-level speciication of the reduction circuit,
that function composition works well for the high-level composition of our compo-
nents. Once we move to internals of control-oriented circuits, standard function
composition does, however, not always seem to be the right answer.

159

5.
5
ś
D
is
c
u
ss
io
n

In section 5.3 we showed that we deined our I2C controller in terms of the state
monad. We did this because the imperative nature of the state monad allowed us
to closely match the original, imperative, VHDL implementation [30]. However,
were we to design the I2C controller from scratch, would we have ended up with
such an imperative implementation? Perhaps most of the functionality could have
been implemented in a functional style. So we cannot state that control-oriented
circuits can only be deined in an imperative style where function composition is
unidiomatic.

If there are circuits that are truly imperative in nature, then we do know that we
can specify themmore idiomatically using a (state) monad. Additionally, this chap-
ter shows that the CλaSH compiler synthesises circuits with acceptable properties
from such imperative speciications. his chapter also shows the beneits of using
functions from existing Haskell libraries, the state monad and lenses, to deine the
behaviour of circuits, and thus the advantage of usingCλaSH compared toDSLs(e.g.
[26] or [58]) embedded in Haskell.

Abstracting patterns

In chapter 2 we saw that existingHDL such as VHDL and Verilog ofer features that
can abstract certain structural, repetitive, patterns. hese patterns correspond to
our higher-order functions such asmap and foldr. In this chapter we have seen a
glimpse (in the form of the datalow combinators) of what other kinds of design
patterns we can capture with higher-order functions. Such patterns cannot be
captured by the abstractions ofered in VHDL or Verilog.

At the moment, circuit designers must use our datalow combinators explicitly
when structuring their circuits. hose familiar with Haskell will have noticed that
our combinators look very much like the methods of the Arrow type class [32]. Ar-
rows have a very convenient notation for their composition [52], sadly this notation
cannot be used for our datalow combinator. he type signatures of the combina-
tors do not match the method signatures of the Arrow class. he problem is that we
parametrise over the types of the synchronisation signals, which we did to enable
parallel composition where both data streams progress independently.

One approach that initially seems like a solution is to relate the types of the ready
lags to types of the data ports using a type function, instead of parametrising them
directly. Our BackPressure type would then look like the code shown in listing 5.18.
However, when we try to implement the very irst function of the Arrow class we
immediately run into problems:

1 instance Arrow DataFlow where
2 arr :: (b → c) → BackPressure b c
3 arr f = DF (λi oRdy → let (iD , iVal) = unbudle i
4 oVal = fmap ??? iVal
5 in (bundle (fmap f o ,oVal) , fmap ??? oRdy))

160

C
h
a
pt
er

5
ś
A
d
va

n
c
ed

a
spec

t
s
o
f
c
ir
c
u
it

d
esig

n
in

C
λ
a
SH

1 type family En a
2 type instance En (a ,b) = (En a , En b)
3 type instance En Int = Bool
4 type instance En Bool = Bool
5 ...
6

7 newtype DataFlow i o
8 = DF
9 { bp :: Signal (i ,En i)

10 → Signal (En o)
11 → (Signal (o , En o)
12 , Signal (En i)
13)
14 }

Listing 5.18 ś DataFlow type deinition using type function

where the problemare the holes in our deinition, indicated by ???. Our intention for
arr is to simply pass the synchronisation lags fromour input to our output. Because
the lags are of diferent types, we need two general functions, one with the type
En i → En o, and the other with type En o → En i . here is, however, no way to
create such polymorphic functions; remember that in ourmapDF function we had
to specify these conversion functions explicitly for every situation. A solution to
our problem would lie in a situation where the Arrow type class does not have an
arr method [45].

Reducing post hoc veriication

Using the delay-annotated signals is one of the ways to reduce the veriication bur-
den associated with circuit design. Designers can no longer, by accident, compose
signals that are improperly synchronized. he type system will enforce that the
designer is very explicit how delay and feedback are managed in the presence of
delay-annotated signals. Sadly, the unsafeFromSignal function, needed to connect
unannotated signals, can be used to subvert the invariants of our delay annotation.
As it is for any unsafe function in the Haskell library (e.g unsafeCoerce :: a -> b),
unsafeFromSignalmust hence be used judiciously.

As future work on this issue we are considering to add the antiDelay function to
our set of functions that can manipulate delay annotation:

1 antiDelay :: Proxy d → DSignal n a → DSignal (n − d) a

which brings values from the future into the now. he antiDelay function would
allow us to implement functions with the type signature:

161

5.
5
ś
D
is
c
u
ss
io
n

1 f :: DSignal (n − 1) a → DSignal n a → DSignal (n − 1) a

that actually use their second argument (that is, they do not solely operate combi-

nationally on the irst argument). With the combinators that we have now (without

antiDelay) the delay of the result of a function is always at least equal to the largest
delay of the function’s arguments.

Additionally, the antiDelay function would, once again, allow us to implement

feedback in terms of value recursion:

1 mac :: DSignal 0 Int → DSignal 0 Int → DSignal 0 Int
2 mac x y = acc ’
3 where
4 acc ’ = (x * y) + (antiDelay Proxy acc)
5 acc = delay [0] acc ’

instead of using an explicit combinator for feedback (fb).

At this moment in time we do not include antiDelay it in our set of combinators
for two reasons:

ż We are unsure of having delay-annotated signals in combination delay oper-

ators that work in opposite directions is, in practice, any safer than having

unannotated signals. For example, our feedback combinator (fb) allowed
us to enforce that feedback loops always have a delay of at least 1.

ż We assume antiDelay does not allow us to specify anti-causual behaviour

because we use natural numbers to specify delays:

ś he earliest now, the result of antiDelay, is a signal with zero delay.

ś his means that the future, the argument of antiDelay, is a signal with
a positive delay, which can only be created using the delay function.

ś he circuit is hence realisable, where antiDelay is simply represented
by a wire.

We have, however, not fully veriied this assumption.

162

163

6
Conclusions

he goal of this thesis is to further improve the productivity of circuit designers.We

have discussed that there are no good indicators that allow us to measure produc-

tivity quantitatively. So instead, we decided to look qualitatively at hardware de-

scription languages. We identiied four aspects of a hardware description language

that improve productivity:

ż he ability to abstract common (repetitive) patterns.

ż To be able to express behaviour idiomatically.

ż To support correct-by-construction design methods.

ż To support a straightforward cost model.

In this thesis we chose to explore the functional programming paradigm for the

purpose of circuit description, in particular higher-order functional languages. Be-

cause of the close semanticmatch between pure functions and combinational circuit

logic, functional languages allow us to describe highly parallel combinational logic

idiomatically. Higher-order functions are a powerful abstraction mechanism that

can capture many design patterns. We therefore set out to determine how well func-

tional languages score in the other qualitative measures to improve productivity.

his gave rise to the following research questions:

ż How can functional languages be used to express both combinational and
sequential circuits idiomatically?

ż How can we support correct-by-construction design methodologies using

a functional language?

ż How can we use the high-level abstractions without losing on performance,

and have a straightforward cost model?

he answers to those questions are given on the next page.

164

C
h
a
pt
er

6
ś
C
o
n
c
lu

sio
n
s

How can functional languages be used to express both combinational and se-
quential circuits idiomatically? Pure functions operating on algebraic data types

are a very good model for the combinational logic in circuits because they are se-

mantically very close. Both concepts map to, can be mapped from, the mathemat-

ical concept of a function directly. In chapter 3 we saw that pattern matching is
a very convenient language feature to express both selection (or choice) and pro-
jection. Chapter 3 also shows the very direct mapping of these two concepts in
combinational circuit logic in the form of multiplexers for selection, and splitting
up bundles of wires for projection. We model synchronous sequential circuits as
functions operating on ininite streams of samples, where every sample corresponds
to the stable value of the signal during one clock cycle. Simple synchronous circuits
are speciied in terms of memory primitives, and mapping functions representing
combinational circuits over our streams. For more complex sequential circuits de-
signs, we describe solely the combinational part of a Mealy machine, and use a
combinator to add the memory element and feedback loop.

How can we use functional languages to support correct-by-construction design
methodologies? his thesis demonstrates two features that enable correct-by-
construction designs. In chapter 5 we show that higher-order functions, and ad-
vanced type annotations, give us compositions of circuits that respect certain in-
variants. We use higher-order functions to compose circuits with back-pressure as
their synchronisation mechanism and guarantee that the synchronisations ports
are always correctly connected. We use advanced type annotations to only allow
compositions of circuits in such a way that all their arguments have the expected
amount of accumulated cycle delay. Additionally, by encoding the clock domains
in the type of signals, clock domain crossings are always explicit.

Another aspect of correct-by-construction, is that the synthesis process is correct.
his thesis shows a term rewrite system (TRS) that has transformation rules that
are proven to be semantic preserving. Additionally, high level abstractions without
direct mapping to a circuit are guaranteed to be removed, in a meaning-preserving
manner.

How can we use the high-level abstractions without losing on performance, and
have straightforward cost model? By viewing a function description as a struc-
tural composition of a circuit, every function application ismapped to a component
instantiation. he structural view ensures that all the implicit parallelism in the
description, is mapped to a circuit with the same degree of parallelism. he size of a
circuit is directly derivable from the number of applied functions. Registers are also
never inferred, and are only placed where the circuit designer wants the register
primitive. he circuit designer thus has direct control over gate propagation delay.
From a synthesis point of view, it is thus important to preserve the original func-
tion hierarchy when removing abstractions. his is important because the circuit
designer expects a very close correspondence between the function hierarchy and
the component hierarchy.

165

6.
1
ś
C
o
n
t
r
ib
u
t
io
n
s

6.1 Contributions

he main contributions of this thesis are:

ż A synthesisable model for combinational and sequential circuits in Haskell.
Pure functions operating on algebraic data types describe combinational

circuits, while functions operating on ininite streams of values describe

sequential circuits. We limit the manipulations on streams to a set of conve-

nient primitives which include: a memory element, mapping combinational

functions over streams, and isomorphisms between signals of product types

and products of signal types. his set of primitives is highly expressive, but

still guarantees that it only leads to realisable sequential circuit descriptions.

(Chapter 3)

ż A synthesis method that preserves the function hierarchy.
Our synthesis method uses a term rewrite system (TRS) that ensures that in
the description ater transformation: all bound variables, and all arguments,
can be represented by a inite number of bits. Consequently, it performs
both monomorphisation and defunctionalisation. It performs these oper-
ations in a typed context and preserves the original function hierarchy as
much as possible. It also ensures that sharing is preserved where possible,
meaning the circuit does not become larger than the designer intended. he
transformations are proven to be meaning preserving, and we also prove
that our TRS always inds a synthesisable normal form given only minor
restrictions on the input expression. (Chapter 4)

he accompanying technical contribution is the implementation of theCλaSH com-
piler, and the Haskell library for circuit design. he CλaSH compiler allows us to
synthesize ordinary Haskell functions to a circuit. In chapter 5 we have witnessed
the merits of synthesising Haskell code directly, where we can now use the state
monad [51] and lenses [37] to create imperative descriptions where such an ap-
proach is favourable.

6.2 Recommendations

In chapter 3 we introduced the Signal type for modelling sequential circuits. From
personal communication with users of CλaSH, we know that they understand the
diference between combinational and sequential circuits, but still ind the Signal
type hard to understand. Not so much the Signal type in itself, but the combinators
of the Applicative type class to map combinational circuits over Signals, and the
fact that they cannot pattern-match on sum-types. On the short term, future work
would lie in adding idiombrackets [42] toHaskell, so thatwe have amore convenient
way to lit combinational circuits over Signals. With idiom brackets, instead of
writing:

1 multiplyAndAdd <$> x <*> y <*> acc

166

C
h
a
pt
er

6
ś
C
o
n
c
lu

sio
n
s

we could write:

1 (| multiplyAndAdd x y acc |)

On the longer term, future work would lie in integrating the Signal type in the lan-
guage, and devising a synchronous semantics for this extended language, including

a synchronous semantics for pattern matching.

he CλaSH compiler can, at the moment, only unfold very rudimentary recursive

functions. In order to amortize this deiciency, higher-order functions operating

on vectors are currently marked as primitives, for which the compiler has special

translation logic. In chapter 4we discussed that there is a tension between unrolling
recursive functions, and preserving the function hierarchy. Not only do we have

to inline the recursive function itself, but also functions whose result is used in the

subject of the case-decompositions guarding the recursive call. Future work hence

lies in inding metrics that determine whether a function should be inlined for the

purpose of unrolling bounded recursive descriptions.

In chapter 5we used type-level functions to reason about the correct delay synchro-
nisation of signals. he feedback combinator enforced that the circuit it was adding

a feedback arc to, would have at least 1 cycle of delay. It would be interesting to
investigate what other kinds of correct-by-construction invariants we can encode

at the type level that are useful in the context of circuit design.

In conclusion, we have seen how to efectively describe circuits inHaskell, howHaskell’s
high-level features improve the productivity of circuit designers, and how we can map
these descriptions to eicient circuits.

167

168

169

A
First Class Patterns

in Kansas Lava

1 module Language.KansasLava.Patterns where
2

3 import Language.KansasLava
4

5 −− Heterogeneous Lists
6 data a :. as = a :. as
7 data Nil = Nil
8

9 −− Pattern : bound variable + parent match asserted
10 type Pattern w a = Signal a → Signal Bool → (w, Signal Bool)
11

12 −− Variable pattern
13 pvar :: Rep a ⇒ Pattern (Signal (Enabled a) :. Nil) a
14 pvar = λw en → (packEnabled en w :. Nil , high)
15

16 −− Constant pattern
17 pcnst :: (Rep a , Eq a) ⇒ a → Pattern Nil a
18 pcnst c = λw _ → (Nil ,w .==. pureS c)
19

20 −−Wildcard pattern
21 pwild :: Pattern Nil a
22 pwild = λw _ → (Nil , high)
23

24 −− Alternative : Pattern + Expression
25 (==⇒) :: Pattern w a → (w → Signal b)
26 → Signal a → (Signal b , Signal Bool)
27 pat ==⇒ f = λw→ let (ws,en) = pat w high
28 r = f ws
29 in (r ,en)

170

A
ppen

d
ix

A
ś
F
ir
st

C
la

ss
Pat

t
er
n
s
in

K
a
n
sa
s
L
ava

30

31 −− Pattern matching
32 mATCH :: Rep b ⇒ Signal a → [Signal a → (Signal b , Signal Bool)]
33 → Signal b
34 mATCH _ [] = error "empty case "
35 mATCH r [f] = fst (f r)
36 mATCH r (f:ps) = let (e ,en) = f r
37 in mux en ((mATCH r ps),e)

Listing A.1 ś Language.KansasLava.Patterns

1 module Language.KansasLava.Patterns .Maybe where
2

3 import Language.KansasLava
4 import Language.KansasLava. Patterns
5 import Data.Default
6

7 −− Given:
8 −− data Maybe a = Just a | Nothing
9

10 −−he following encoding is derived :
11 −− Deconstructors :
12 deJust :: Rep a ⇒ Signal (Maybe a) → (Signal U1,Signal a)
13 deJust = unpack . bitwise
14

15 deNothing :: Rep a ⇒ Signal (Maybe a) → Signal U1
16 deNothing = fst . unpack . bitwise
17

18 −− Patterns :
19 pJust :: Rep a ⇒ Pattern w a → Pattern w (Maybe a)
20 pJust p = λw en → let (con , var) = deJust w
21 (ws,enVar) = p var enAll
22 enCon = (con .==. pureS 0)

23 enPat = and2 enCon enVar
24 enAll = and2 enPat en
25 in (ws,enPat)
26

27 pNothing :: Rep a ⇒ Pattern Nil (MaybeP a)
28 pNothing = λw _ → let con = deNothing w
29 in (Nil , con .==. pureS 1)

Listing A.2 ś Constructors and Patterns for theMaybe data type

171

A
pp
en

d
ix

A
ś
F
ir
st

C
la

ss
Pa
t
t
er
n
s
in

K
a
n
sa
s
L
av
a

1 module Language.KansasLava where
2

3 −− Signal /Tuple conversion
4 unpack :: Signal (a ,b) → (Signal a , Signal b)
5 −− Convert by bit− representation
6 bitwise :: (Rep a ,Rep b ,W a ~W b)⇒ Signal a → Signal b
7 −− Create a Signal from a constant
8 pureS :: Rep a ⇒ a → Signal a
9

10 −− Combine data and a Boolean into an enabled Signal
11 packEnabled :: Signal Bool → Signal a → Signal (Enabled a)
12 −− Assert that ordinary signals are always valid
13 enableS :: Signal a → Signal (Enabled a)
14 −− Register that only updates it contents when the input is valid
15 registerEnabled :: Rep a ⇒ a → Signal (Enabled a) → Signal a
16

17 −− Lited Boolean equality
18 (.==.) :: (Rep a ,Eq a) ⇒ Signal a → Signal a → Signal Bool
19 −− Always ’True ’
20 high :: Signal Bool
21 −− Always ’ False ’
22 low :: Signal Bool
23 −− Lited Boolean conjunction
24 and2 :: Signal Bool → Signal Bool → Signal Bool
25 −− Multiplex two signals based on the irst argument
26 mux :: Rep a ⇒ Signal Bool → (Signal a , Signal a) → Signal a

Listing A.3 ś Language.KansasLava (Simpliied)

172

173

B
Synchronisation Primitive

1 unsafeSynchroniser
2 :: SClock clk1 −− ^ ’Clock ’ of the incoming signal
3 → SClock clk2 −− ^ ’Clock ’ of the outgoing signal
4 → CSignal clk1 a
5 → CSignal clk2 a
6 unsafeSynchroniser (SClock _ clk1) (SClock _ clk2) s = s ’
7 where
8 t1 = fromInteger (snatToInteger clk1)
9 t2 = fromInteger (snatToInteger clk2)

10 s ’ | t1 < t2 = compress t2 t1 s
11 | t1 > t2 = oversample t1 t2 s
12 | otherwise = same s
13

14 same :: CSignal clk1 a → CSignal clk2 a
15 same (CSignal s) = CSignal s
16

17 oversample :: Int → Int → CSignal clk1 a → CSignal clk2 a
18 oversample high low (CSignal (s :− ss)) = CSignal (s :− oversampleS

(reverse (repSchedule high low)) ss)
19

20 oversampleS :: [Int] → Signal a → Signal a
21 oversampleS sched = oversample ’ sched
22 where
23 oversample ’ [] s = oversampleS sched s
24 oversample ’ (d :ds) (s :− ss) = preixN d s (oversample ’ ds ss)
25

26 preixN 0 _ s = s
27 preixN n x s = x :− preixN (n−1) x s
28

29

30

174

A
ppen

d
ix

B
ś
Sy
n
c
h
r
o
n
isat

io
n
P
r
im

it
iv
e

31 compress :: Int → Int → CSignal clk1 a → CSignal clk2 a
32 compress high low (CSignal s) = CSignal (compressS (repSchedule high

low) s)
33

34 compressS :: [Int] → Signal a → Signal a
35 compressS sched = compress ’ sched
36 where
37 compress ’ [] s = compressS sched s
38 compress ’ (d :ds) ss@(s :− _) = s :− compress ’ ds (dropS d ss)
39

40 dropS 0 s = s
41 dropS n (_ :− ss) = dropS (n−1) ss
42

43 repSchedule :: Int → Int → [Int]
44 repSchedule high low = take low $ repSchedule ’ low high 1

45 where
46 repSchedule ’ cnt th rep
47 | cnt < th = repSchedule ’ (cnt+low) th (rep + 1)
48 | otherwise = rep : repSchedule ’ (cnt + low) (th + high) 1

Listing B.1 ś unsafeSynchroniser

175

176

177

C
System FC

his appendix gives an overview of the System FC grammar, its typing rules, its

operational semantics, and the proofs for type preservation and progress of the

operational semantics. he presented System FC is a small extension of the System

FC presented in [69]. Parts of this appendix are thus verbatim copies of [69]. Our
extensions will be clearly marked.

C.1 Grammar

his section gives an overview of the SystemFC grammar. Our extensions to the lan-

guage are: recursive let-expressions, primitive operations, projections, and default

patterns for case-decompositions.

H ∶∶≙ Type constants

∣ (→) Arrow

∣ ⋆ Type/Kind

∣ T Type constructor

∣ K Promoted data constructor

w ∶∶≙ Type-level names

∣ a Type variables

∣ F Type functions

∣ H Type constants

σ , τ, κ ∶∶≙ Types and Kinds

∣ w Names

∣ ∀a ∶ κ.τ Polymorphic types

∣ ∀c ∶ ϕ.τ Coercion abstr. type

∣ τ1 τ2 Type/kind application

∣ τ▷ γ Casting

∣ τ γ Coercion application

ϕ ∶∶≙ σ ∼ τ Propositions (coercion kinds)

178

A
ppen

d
ix

C
ś
Syst

em
F
C

γ, η ∶∶≙ Coercions

∣ c Variables

∣ C ρ Axiom application

∣ ⟨τ⟩ Relexivity

∣ sym γ Symmetry

∣ γ1 o
9 γ2 Transitivity

∣ ∀η(a1 , a2 , c).γ Type/kind abstraction congruence

∣ ∀(η1 ,η2)(c1 , c2).γ Coercion abstraction congruence

∣ γ1 γ2 Type/kind application congruence

∣ γ(γ2 , γ
′
2) Coercion application congruence

∣ γ▷ γ′ Coherence

∣ γ@γ′ Type/kind instantiation

∣ γ@(γ1 , γ2) Coercion instantiation

∣ nthi γ nth
argument projection

∣ kind γ Kind equality extraction

ρ ∶∶≙ τ ∣ γ Type or coercion

e , u ∶∶≙ Expressions

∣ x Variables

∣ λx ∶ τ.e Abstraction

∣ e1 e2 Application

∣ Λa ∶ κ.e Type/kind abstraction

∣ e τ Type/kind application

∣ λc ∶ ϕ.e Coercion abstraction

∣ e γ Coercion application

∣ e▷ γ Casting

∣ K Data constructors

∣ case e of p → u Case decomposition

∣ let x ∶ σ ≙ e in u Recursion let-expression

∣ ⊗ Primitive operation

∣ πk
i e Constructor ield projection

p ∶∶≙ Patterns

∣ K ∆ x ∶ τ Constructor pattern

∣ _ Default pattern

∆ ∶∶≙ Telescopes

∣ ∅ Empty

∣ ∆, a ∶ κ Type variable binding

∣ ∆, c ∶ ϕ Coercions variable binding

C.2 Type system

A context Γ is a list of assumptions for term variables (x), primitives (⊗), type
variables/data types/data constructors (w), coercion variables (c), and coercion

179

C
.2
ś
T
y
pe

sy
st
em

axioms (C).

Γ ∶∶≙ ∅ ∣ Γ, x ∶ τ ∣ Γ,⊗ ∶ τ ∣ Γ, w ∶ κ ∣ Γ, c ∶ ϕ ∣ Γ, C ∶ ∀∆.ϕ

hese rules ensure that all assumptions in the context are well formed and unique

(indicated by #). hey additionally constrain the form of the kinds of data types,

and the types of data constructors. Our addition is a well-formedness check on the

types of primitives (GWF_Prim).

⊢wf Γ Context well-formedness

GWF_Empty
⊢wf ∅

GWF_TyVar

Γ ⊢ty κ ∶ ⋆ a # Γ

⊢wf Γ, a ∶ κ

GWF_TyFun

Γ ⊢ty κ ∶ ⋆ F # Γ

⊢wf Γ, F ∶ κ

GWF_TyData

Γ ⊢ty ∀a ∶ κ.⋆ ∶ ⋆ T # Γ

⊢wf Γ, T ∶ ∀a ∶ κ.⋆

GWF_Var

Γ ⊢ty τ ∶ κ x # Γ

⊢wf Γ, x ∶ τ
GWF_Prim

Γ ⊢ty T → T ∶ ⋆

⊢wf Γ,⊗ ∶ T → T

GWF_Con

Γ ⊢ty ∀a ∶ κ.∀∆.(σ → T a) ∶ ⋆ K # Γ

⊢wf Γ, K ∶ ∀a ∶ κ.∀∆.(σ → T a)

GWF_CVar

Γ ⊢pr ϕ ok c # Γ

⊢wf Γ, c ∶ ϕ
GWF_Ax

Γ, ∆ ⊢pr ϕ ok C # Γ

⊢wf Γ,C ∶ ∀∆.ϕ

henext rules ensure correct kinding of types. here are no additions to these rules.

Γ ⊢ty τ ∶ κ Type/Kind formation

K_Var
⊢wf Γ w ∶ κ ∈ Γ

Γ ⊢ty w ∶ κ
K_Arrow

⊢wf Γ

Γ ⊢ty (→) ∶ ⋆→ ⋆→ ⋆

K_AllT

Γ, a ∶ κ ⊢ty τ ∶ ⋆ Γ ⊢ty κ ∶ ⋆

Γ ⊢ty ∀a ∶ κ.τ ∶ ⋆

K_App

Γ ⊢ty τ1 ∶ κ1 → κ2 Γ ⊢ty τ2 ∶ κ1

Γ ⊢ty τ1 τ2 ∶ κ2

K_Inst

Γ ⊢ty τ1 ∶ ∀a ∶ κ1 → κ2 Γ ⊢ty τ2 ∶ κ1

Γ ⊢ty τ1 τ2 ∶ κ2∥τ2/a∥

180

A
ppen

d
ix

C
ś
Syst

em
F
C

K_StateInStar
⊢wf Γ

Γ ⊢ty ⋆ ∶ ⋆
K_AllC

Γ, c ∶ ϕ ⊢ty τ ∶ ⋆ Γ ⊢pr ϕ ok

Γ ⊢ty ∀a ∶ κ.τ ∶ ⋆

K_Cast

Γ ⊢ty τ ∶ κ1 Γ ⊢co η ∶ κ1 ∼ κ2 Γ ⊢ty κ2 ∶ ⋆

τ▷ η ∶ κ2

he rule ensures correct formation of propositions.

Γ ⊢pr ϕ ok Proposition validity

Prop_Equality

Γ ⊢ty σ1 ∶ κ1
Γ ⊢ty σ2 ∶ κ2

Γ ⊢pr σ1 ∼ σ2 ok

Next follow the rules for coercions; again, there are no additions.

Γ ⊢co γ ∶ ϕ Coercion typing

CT_Refl

Γ ⊢ty τ ∶ κ

Γ ⊢co ⟨τ⟩ ∶ τ ∼ τ
CT_Sym

Γ ⊢co γ ∶ τ1 ∼ τ2

Γ ⊢co sym γ ∶ τ2 ∼ τ1

CT_Trans

Γ ⊢co γ1 ∶ τ1 ∼ τ2 Γ ⊢co γ2 ∶ τ2 ∼ τ3

Γ ⊢co γ1 o
9 γ2 ∶ τ1 ∼ τ3

CT_App

Γ ⊢co γ1 ∶ τ
′
1 ∼ τ

′
2 Γ ⊢co γ2 ∶ τ1 ∼ τ1

Γ ⊢ty τ
′
1 τ1 ∶ κ1 Γ ⊢ty τ

′
2 τ2 ∶ κ2

Γ ⊢co γ1 γ2 ∶ τ
′
1 τ1 ∼ τ

′
2 τ2

CT_CApp

Γ ⊢co γ1 ∶ τ1 ∼ τ
′
1

Γ ⊢ty τ1 γ2 ∶ κ Γ ⊢ty τ
′
1 γ
′
2 ∶ κ

′

Γ ⊢co γ1(γ2 , γ
′
2) ∶ τ1 γ2 ∼ τ

′
1 γ
′
2

CT_AllT

Γ ⊢co η ∶ κ1 ∼ κ2
Γ, a1 ∶ κ1 , a2 ∶ κ2 , c ∶ a1 ∼ a2 ⊢co γ ∶ τ1 ∼ τ2

Γ ⊢ty ∀a1 ∶ κ1 .τ1 ∶ ⋆ Γ ⊢ty ∀a2 ∶ κ2 .τ2 ∶ ⋆

Γ ⊢co ∀η(a1 , a2 , c).γ ∶ (∀a1 ∶ κ1 .τ1) ∼ (∀a2 ∶ κ2 .τ2)

CT_AllC

Γ ⊢co η1 ∶ σ1 ∼ σ
′
1 ϕ1 ≙ σ1 ∼ σ2

Γ ⊢co η2 ∶ σ2 ∼ σ
′
2 ϕ2 ≙ σ ′1 ∼ σ

′
2

c1 # ∣γ∣ c2 # ∣γ∣
Γ, c1 ∶ ϕ1 , c2 ∶ ϕ2 ⊢co γ ∶ τ1 ∼ τ2

Γ ⊢ty ∀a1 ∶ κ1 ∶ τ1 ∶ ⋆ Γ ⊢ty ∀a2 ∶ κ2 .τ2 ∶ ⋆

Γ ⊢co ∀(η1 ,η2)(c1 , c2).γ ∶ (∀c1 ∶ ϕ1 .τ1) ∼ (∀c2 ∶ ϕ2 .τ2)

181

C
.2
ś
T
y
pe

sy
st
em

CT_Coh
Γ ⊢co γ ∶ τ1 ∼ τ2 Γ ⊢ty τ1 ▷ γ′ ∶ κ

Γ ⊢co γ▷ γ′ ∶ τ1 ▷ γ′ ∼ τ2

CT_Var

c ∶ ϕ ∈ Γ ⊢wf Γ

Γ ⊢co c ∶ ϕ

CT_Axiom

C ∶ ∀∆.(τ1 ∼ τ2) ∈ Γ Γ ⊢tel ρ ⇐ ∆

Γ ⊢co C ρ ∶ τ1∥ρ/∆∥ ∼ τ2∥ρ/∆∥

CT_Nth

Γ ⊢co γ ∶ H ρ ∼ H ρ′

ρ i ≙ τ ρ′i ≙ τ′

Γ ⊢co nth
i γ ∶ τ ∼ τ′

CT_Nth1TA
Γ ⊢co γ1 ∶ (∀a1 ∶ κ1 .τ1) ∼ (∀a2 ∶ κ2 .τ2)

Γ ⊢co nth
1 γ1 ∶ κ1 ∼ κ2

CT_Inst

Γ ⊢co γ1 ∶ (∀a1 ∶ κ1 .τ1) ∼ (∀a2 ∶ κ2 .τ2)
Γ ⊢co γ2 ∶ σ1 ∼ σ2

Γ ⊢ty σ1 ∶ κ1 Γ ⊢ty σ2 ∶ κ2

Γ ⊢co γ1@γ2 ∶ τ1∥σ1/a1∥ ∼ τ2∥σ2/a2∥

CT_Nth1CA
Γ ⊢co γ ∶ (∀c ∶ κ1 ∼ κ2 .τ) ∼ (∀c

′ ∶ κ′1 ∼ κ
′
2 .τ
′)

Γ ⊢co nth
1 γ ∶ κ1 ∼ κ

′
1

CT_Nth2CA
Γ ⊢co γ ∶ (∀c ∶ κ1 ∼ κ2 .τ) ∼ (∀c

′ ∶ κ′1 ∼ κ
′
2 .τ
′)

Γ ⊢co nth
2 γ ∶ κ2 ∼ κ

′
2

CT_InstC

Γ ⊢co γ ∶ (∀c1 ∶ ϕ1 .τ1) ∼ (∀c2 ∶ ϕ2 .τ2)
Γ ⊢co γ ∶ ϕ1 Γ ⊢co γ2 ∶ ϕ2

Γ ⊢co γ@(γ1 , γ2) ∶ τ1∥γ1/c1∥ ∼ τ2∥γ2/c2∥

CT_Ext

Γ ⊢co γ ∶ τ1 ∼ τ2 Γ ⊢ty τ1 ∶ κ1 Γ ⊢ty τ2 ∶ κ2

Γ ⊢co kind γ ∶ κ1 ∼ κ2

he deinitions for the erasure operation, ∣γ∣, and the telescope argument validity
judgement, Γ ⊢tel ρ ⇐ ∆, can be found in [69].

he next set of rules determine whether an expressions is correctly typed. Our
additions are the typing rules for let-expressions (T_LetRec), primitives (T_Prim),
projections (T_Proj), and default patterns for case-decompositions (T_AltDef).

182

A
ppen

d
ix

C
ś
Syst

em
F
C

Γ ⊢tm e ∶ τ Expression typing

T_Var
⊢wf Γ x ∶ τ ∈ Γ

Γ ⊢tm x ∶ τ
T_Abs

Γ, x ∶ τ1 ⊢tm e ∶ τ2
Γ ⊢tm λx ∶ τ.e ∶ τ1 → τ2

T_App
Γ ⊢tm e ∶ τ1 → τ2 Γ ⊢tm u ∶ τ1

Γ ⊢tm e u ∶ τ2

T_CAbs

Γ, c ∶ ϕ ⊢tm e ∶ τ Γ ⊢pr ϕ ok

Γ ⊢tm λc ∶ ϕ.e ∶ ∀c ∶ ϕ.τ
T_CApp

Γ ⊢tm e ∶ ∀c ∶ ϕ.τ
Γ ⊢co γ ∶ ϕ

Γ ⊢tm e γ ∶ τ∥γ/c∥

T_TAbs
Γ, a ∶ κ ⊢tm e ∶ τ

Γ ⊢tm Λa ∶ κ.e ∶ ∀a ∶ κ.τ

T_TApp

Γ ⊢tm e ∶ ∀a ∶ κ.τ Γ ⊢ty τ
′ ∶ κ

Γ ⊢tm e τ ∶ τ∥τ′/a∥

T_Cast

Γ ⊢tm e ∶ τ1 Γ ⊢co γ ∶ τ1 ∼ τ2 Γ ⊢ty τ2 ∶ ⋆

e▷ γ ∶ τ2

T_Con
⊢wf Γ K ∶ τ ∈ Γ

Γ ⊢tm ⊗ ∶ τ

T_Case

Γ ⊢tm e ∶ T τ′ Γ ⊢alt p i → u i ∶ T τ′ → τ

Γ ⊢tm case e of p → u ∶ τ

T_LetRec
Γ, x ∶ σ ⊢bind x i ∶ σi ← e i Γ, x ∶ σ ⊢tm u ∶ τ

Γ ⊢tm let x ∶ σ ≙ e in u ∶ τ

T_Prim
⊢wf Γ ⊗ ∶ τ ∈ Γ

Γ ⊢tm ⊗ ∶ τ

T_Proj
Γ ⊢tm e ∶ T τ′ Γ ⊢alt Kk ∆ x ∶ τ′ → x i ∶ T τ′ → τ

Γ ⊢tm πk
i e ∶ τ

Γ ⊢alt p → e ∶ σ → τ Alternative typing

T_AltDef

Γ ⊢tm e ∶ τ Γ ⊢ty τ ∶ ⋆ Γ ⊢ty σ ∶ ⋆

Γ ⊢alt _→ e ∶ σ → τ

183

C
.3
ś
O
pe
r
at

io
n
a
l
se
m
a
n
t
ic
s

T_AltCon

Γ ⊢ty τ ∶ ⋆
K ∶ ∀a ∶ κ.∀∆.σ → (Ta) ∈ Γ

∆′ ≙ ∆∥τ′/a∥

σ ′ ≙ σ∥τ′/a∥
Γ, ∆′ , x ∶ σ ′ ⊢tm u ∶ τ

Γ ⊢alt K ∆′ x ∶ σ ′ → u ∶ T τ′ → τ

Γ ⊢bind x ∶ σ ← e Binding typing

T_Bind
Γ ⊢tm e ∶ σ

Γ ⊢bind x ∶ σ ← e

C.3 Operational semantics

To support recursion of let-expressions, we use an extra context Σlet that keeps
track of the bindings in the recursive group. Our additions are those step reduction
rules involving let-expressions, primitives, and projections.

Σlet; e Ð→ e′ Step reduction, parametrised by top-level context Γ

Σlet ∶∶≙ ∅ ∣ Σlet , x ↦ e

S_Beta

Σlet; (λx ∶ τ.e) e
′ Ð→ e∥e′/x∥

S_EApp

Σlet; e1 Ð→ e′1
Σlet; e1 e2 Ð→ e′1 e2

S_Push

Γ ⊢co γ ∶ σ1 → σ2 ∼ τ1 → τ2

Σlet; (v▷ γ) e Ð→ (v (e▷ sym(nth1γ))▷ nth2γ

S_TBeta

Σlet; (Λa ∶ κ.e) τ Ð→ e∥τ/a∥
S_TApp

Σlet; e1 Ð→ e′1
Σlet; e1 σ Ð→ e′1 σ

S_TPush

Γ ⊢co γ ∶ ∀a ∶ κ1 .σ1 ∼ ∀a ∶ κ2 .σ2
γ′ ≙ sym(nth1γ)
τ′ ≙ τ ▷ γ′

Σlet; (v▷ γ) τ Ð→ (v τ′)▷ γ@(⟨τ⟩▷ γ′)

S_CBeta

Σlet; (λc ∶ σ1 ∼ σ2 .e) γ Ð→ e∥γ/c∥
S_CApp

Σlet; e1 Ð→ e′1
Σlet; e1 γ Ð→ e′1 γ

S_CPush

Γ ⊢co γ ∶ ∀c ∶ ϕ.τ ∼ ∀c
′ ∶ ϕ′ .τ′

γ′′ ≙ nth1γ o
9 γ
′ o
9 sym(nth

2γ)

Σlet; (v▷ γ) γ′ Ð→ (v γ′′)▷ γ@(γ′′ , γ′)

184

A
ppen

d
ix

C
ś
Syst

em
F
C

S_Comb
Σlet; (v▷ γ1)▷ γ2 Ð→ v▷ (γ1 o

9 γ2)

S_Coerce
Σlet; e Ð→ e′

Σlet; e▷ γ Ð→ e′▷ γ

S_CaseMatch

K i ∆ i x i ∶ σi → u i ∈ p → u

Σlet; case K i τ ρ e of p → u Ð→ u i∥e/x i∥∥ρ/∆ i∥

S_CaseDef

_→ u i ∈ p → u No other matches

Σlet; case K i τ ρ e of p → u Ð→ u i

S_Case
Σlet; e Ð→ e′

Σlet; case e of p → u Ð→ case e′ of p → u

S_ProjKPush

K ∶ ∀a ∶ κ.∀∆.σ → (T a) ∈ Γ
Ψ ≙ extend(context(γ); ρ;∆)
τ′ ≙ Ψ2(a)
ρ′ ≙ Ψ2(dom ∆)
for each e i ∈ e

e′i ≙ e i ▷Ψ(σi)

Σlet; case (K i τ ρ e)▷ γ of p → u Ð→ case K i τ′ ρ′ e′ of p → u

S_Var

Σlet(x) ≙ e

Σlet; x Ð→ e

S_LetRec
Σlet , x ↦ e; u Ð→ u′

Σlet; let x ∶ σ ≙ e in u Ð→ let x ∶ σ ≙ e in u′

S_LetApp

Σlet; (let x ∶ σ ≙ e in u) e′ Ð→ let x ∶ σ ≙ e in (u e′)

S_LetTApp

Σlet; (let x ∶ σ ≙ e in u) τ Ð→ let x ∶ σ ≙ e in (u τ)

S_LetCApp

Σlet; (let x ∶ σ ≙ e in u) γ Ð→ let x ∶ σ ≙ e in (u γ)

S_LetCast

Σlet; (let x ∶ σ ≙ e in u)▷ γ Ð→ let x ∶ σ ≙ e in (u▷ γ)

S_LetFlat

Σlet; let x ∶ σ ≙ e in (let x′ ∶ σ ′ ≙ e′ in u)Ð→
let x ∶ σ ≙ e , x′ ∶ σ ′ ≙ e′ in u

S_LetCase

Σlet; case (let x ∶ σ ≙ e in u) of p → u′ Ð→
let x ∶ σ ≙ e in (case u of p → u′)

S_PrimLet

Σlet;⊗ (let x ∶ σ ≙ e in u) Ð→ let x ∶ σ ≙ e in (⊗ u)

185

C
.4
ś
M
et
at

h
eo

ry

S_PrimCast
Γ ⊢co γ ∶ T ∼ T

Σlet;⊗ v (v′▷ γ) Ð→ ⊗ v v′
S_Prim

Σlet; e Ð→ e′

Σst;⊗ e Ð→ ⊗ e′

S_PrimDelta
⊗ v Ð→δ v′

Σst;⊗ v Ð→ v′
S_Proj

Σlet; e Ð→ e′

Σlet; π
k
i e Ð→ πk

i e
′

S_ProjKPush

K ∶ ∀a ∶ κ.∀∆.σ → (T a) ∈ Γ
Ψ ≙ extend(context(γ); ρ;∆)
τ′ ≙ Ψ2(a)
ρ′ ≙ Ψ2(dom ∆)

for each e i ∈ e
e′i ≙ e i ▷Ψ(σi)

Σst; π
k
i (K τ ρ e▷ γ) Ð→ πk

i (K τ′ ρ′ e′)

S_ProjLet

Σlet; π
k
i (let x ∶ σ ≙ e in v) Ð→ let x ∶ σ ≙ e in (πk

i v)

S_ProjMatch
Kk ∆k x ∶ σ → x i

Σlet; π
k
i (Kk τ ρ e) Ð→ e i∥ρ/∆k∥

C.4 Metatheory

his section contains the proofs that our step reduction rules preserve typing, and
that an evaluator following our step reduction rules never gets stuck.

C.4.1 Preservation

heorem: C.4.1 (Preservation). If Γ ⊢tm e ∶ τ and Σlet; e Ð→ e′ then Γ ⊢tm e′ ∶ τ

Proof. he proof for the original parts of System FC can be found in [69], we will
only present the additional cases needed by our extensions.

ż Case S_LetApp. By inversion of the typing rules we have:

ś Γ ⊢tm let x ∶ σ ≙ e in u ∶ σ → τ

ś Γ, x ∶ σ ⊢tm u ∶ σ → τ

ś Γ ⊢tm e′ ∶ σ

We can show:

ś Γ, x ∶ σ ⊢tm u e′ ∶ τ, by T_App.

ś Γ ⊢tm let x ∶ σ ≙ e in (u e′) ∶ τ, by T_LetRec.

ż he cases for S_LetTApp, S_LetCApp, and S_LetFlat, are analogous to
the above case.

ż Case S_LetCase. By inversion we have:

186

A
ppen

d
ix

C
ś
Syst

em
F
C

ś Γ ⊢alt p i → u′i ∶ T τ′ → τ

ś Γ ⊢tm let x ∶ σ ≙ e in u ∶ T τ′

ś Γ, x ∶ σ ⊢tm u ∶ T τ′

We can show:

ś Γ, x ∶ σ ⊢tm case u of p → u′ ∶ τ, by T_Case.

ś Γ ⊢tm let x ∶ σ ≙ e in (case u of p → u′) ∶ τ, by T_LetRec.

ż he cases for S_ProjKPush, S_ProjLet, and S_ProjMatch are analogous
to the cases: S_KPush, S_LetCase, and S_CaseMatch.

ż Case S_PrimCast. By inversion we have:

ś Γ ⊢tm ⊗ v ∶ T → τ

ś Γ ⊢tm (v′▷ γ) ∶ T

ś Γ ⊢tm v′ ∶ T

We can show:

ś Γ ⊢tm ⊗ v v′ ∶ τ, by T_App.

ż Case S_PrimLet. By inversion we have:

ś Γ ⊢tm ⊗ ∶ T → τ

ś Γ ⊢tm let x ∶ σ ≙ e in u ∶ T

ś Γ, x ∶ σ ⊢tm u ∶ T

We can show:

ś Γ, x ∶ σ ⊢tm ⊗ u ∶ τ, by T_App.

ś Γ ⊢tm let x ∶ σ ≙ e in (⊗ u) ∶ τ, by T_LetRec.

ż Case S_Var. By inversion we have:

ś x ∶ τ ∈ Γ.

ś Γ ⊢bind x ∶ τ ← e.

ś Γ ⊢tm e ∶ τ.

ż Case S_CaseDef. By inversion we have:

ś Γ ⊢alt _→ u i ∶ σ → τ

ś Γ ⊢tm u i ∶ τ

ż he remaining cases: S_LetRec, S_Proj, S_Prim, and S_PrimDelta, are
all by induction.

187

C
.4
.2
ś
P
r
o
g
r
es
s

C.4.2 Progress

he progress theorem roughly states that if an expression is not a value, always one
of the step-reduction rules applies so that an evaluator for expressions can make
progress. Values, and their types, value types, are deined by the grammar:

v ::= λx ∶ σ .e ∣ Λa ∶ κ.e ∣ λc ∶ ϕ.e ∣ K τ ρ e ∣ ⊗ v
ξ ::= σ1 → σ2 ∣ ∀a ∶ κ.σ ∣ ∀c ∶ ϕ.σ ∣ T σ

We recapitulate the canonical forms lemma:

Lemma: 4.2.1 (Canonical forms). Say Σ ⊢tm v ∶ σ , where Σ is a closed context
and v is a value. hen σ is a value type. Furthermore,

1. If σ ≙ σ1 → σ2 then v is λx ∶ σ1 .e or K τ ρ e or ⊗ v.

2. If σ ≙ ∀a ∶ κ.σ ′ then v is Λx ∶ κ.e or K τ ρ e.

3. If σ ≙ ∀c ∶ ϕ.σ ′ then v is λc ∶ τ1 ∼ τ2 .e or K τ ρ e.

4. If σ ≙ T τ then v is K τ ρ e or ⊗ v.

he canonical forms lemma tells us that the shape of a value is determined by its
type. Additionally, we can only make progress when we are working in a consistent
context, which is deined by:

Deinition C.1 (Consistency). A context Γ is consistent if ξ1 and ξ2 have the same
head form whenever Γ ⊢co γ ∶ ξ1 ∼ ξ2.

We can now recapitulate, and prove, our progress theorem:

heorem: 4.2.1 (Progress). Assume a closed¹, consistent, context Γ. If Γ ⊢tm e1 ∶ τ
and e1 is not a value v, a coerced value v ▷ γ, or a let-abstracted version of either,
then there exists an e2 such that Σlet; e1 Ð→ e2.

Proof. By induction on e1. Assume e1 is not a value, coerced value, nor a let-ab-
stracted version of either.

ż Case e1 ≙ x. Because we are operating in a closed context, x refers to a
let-bound variable, and S_Var applies.

ż Case e1 ≙ e e′. By induction, e is either a value v, a coerced value v ▷ γ, a
let-expression, or takes a step.

1. In the irst case, by canonical forms, v is either an abstraction (which
beta reduces by S_Beta), a constructor application (which means that
e1 is a value), or a primitive application. When e is a primitive appli-
cation, e′ is either a value (which means that e1 is a value), a coerced
value, a let-expression, or e1 takes a step by the primitive congruence
rule (S_Prim).

1A context is closed if it does not contain any expression variable bindings.

188

A
ppen

d
ix

C
ś
Syst

em
F
C

ś When e′ is a coerced value (v▷γ), by the well-formedness check,
primitives only operate on unparametrised data types and γ is
a witness of the syntactical equality T ∼ T , and can be safely
removed by (S_PrimCast).

ś When e′ is a let-expression, the let-binders are moved out of the
application by PrimLet.

2. In the second case, we have a coercion between a value type τ, and
τ1 → τ2. By consistency, then τ must be σ1 → σ2 and the S_Push rule
applies.

3. In the third case, the let propagation rule for applications, S_LetApp,
applies.

4. In the last case e1 takes a step by the application congruence rule S_-
EApp.

ż Case e1 ≙ e τ and e1 ≙ e γ are analogous to the previous case modulo
primitives. By the well-formedness check, primitives are monomorphic.

ż Case e1 ≙ e▷ γ. By induction, either e is a value v, a coerced value v▷ γ, a
let-expression, or takes a step.

1. In the irst case, then e1 is a coerced value.

2. In the second case, (v▷ γ′)▷ γ steps to v▷ (γ′ o
9 γ) by S_Comb.

3. In the third case, the let propagation rule for casts, S_LetCast, applies.

4. In the last case, the congruence rule for casts, S_Coerce, applies.

ż Case e1 ≙ let x ∶ τ ≙ u in e. By induction, e is either a value v, a coerced
value v▷ γ, a let-expression, or takes a step.

1. In the irst case, then e1 is a let-abstracted value.

2. In the second case, then e1 is a let-abstracted coerced value.

3. In the third case, the let-bindings are grouped into one let-expression
by S_LetFlat.

4. In the last case, the congruence rule for let expressions, S_LetRec,
applies.

ż Case e1 ≙ case e of p → u. By induction, either e is a value v, a coerced
value v▷ γ, a let-expression, or takes a step.

1. In the irst case, by canonical forms, v is either a constructor appli-
cation and the case-decomposition reduces by S_CaseMatch or S_-
CaseDef, or v is a primitive application, and e reduces by the rule
S_PrimDelta.

2. In the second case, we have a coercion γ between a value type τ, and
T σ . By consistency, then τ must be T σ ′ and the KPush rule applies.

3. In the third case, the let-bindings are moved out of the case-decompo-
sition by S_LetCase.

4. In the last case, the congruence rule for case-decompositions, S_Case,
applies.

189

C
.4
.2
ś
P
r
o
g
r
es
s

ż Case e1 ≙ πk
i e is analogous to the previous case.

190

191

D
Preservation of

the rewrite rules

his appendix proves that the rewrite rules of chapter 4 are type and semantics
preserving.

D.1 Type preservation

For our proofs we will make use of the substitution lemma deined in [68]:

Lemma: D.1.1 (Term substitution). Say Γ1 ⊢tm e′ ∶ σ ′. If Γ1 , x ∶ σ
′ , Γ2 ⊢tm e ∶ σ ,

then Γ1 , Γ2 ⊢tm e∥x ↦ e′∥ ∶ σ .

We need to show that the rewrite rules preserve the types of the expressions, and
ensure that binders added to the global environment Γ are correctly typed. We state
our type preservation theorem as follows:

heorem: D.1.1 (Type preservation). Given that for every expression binding in Γ,
f i ∶ σi ≙ e i , Γ ⊢tm e i ∶ σi holds. If Γ ⊢tm e ∶ τ, and (Γ′ , e′) are the new environment
and the new expression ater applying a rewrite rule to e, then Γ′ ⊢tm e′ ∶ τ, and for
every f i ∶ σi ≙ e i in Γ′, Γ′ ⊢tm e i ∶ σi holds.

Proof. Many of the rewrite rules are a direct implementation of the operational
semantics of System FC and are thus type preserving by theorem C.4.1, which is
proven in the previous appendix.

We thus present the cases that are not a direct implementation of the operational
semantics:

ż Case CaseTApp. By inversion of the typing rules we have:

ś Γ ⊢tm case e of p → u ∶ ∀a ∶ κ.τ

ś Γ ⊢alt p i → u i ∶ T τ′ → ∀a ∶ κ.τ

192

A
ppen

d
ix

D
ś
P
r
eservat

io
n
o
f
t
h
e
r
ew

r
it
e
ru

les

ś Γ, ∆′ , x ∶ σ ′ ⊢tm u i ∶ ∀a ∶ κ.τ

ś Γ ⊢ty σ ∶ κ

We can show:

ś Γ, ∆′ , x ∶ σ ′ ⊢tm u i σ ∶ τ, by T_TApp.

ś Γ ⊢alt p i → (u i σ) ∶ T τ′ → τ, by T_AltCon.

ś Γ ⊢tm case e of p → (u σ) ∶ τ, by T_Case.

ż Cases CaseCApp and CaseCast are analogous to CaseTApp

ż Case LamApp. By inversion we have:

ś Γ ⊢tm λx ∶ σ .e ∶ σ → τ

ś Γ, x ∶ σ ⊢tm e ∶ τ

ś Γ ⊢tm u ∶ σ

We can show:

ś Γ ⊢bind x ∶ σ ← u, by T_Bind.

ś Γ ⊢tm let {x ∶ σ ≙ u} in e ∶ τ, by T_LetRec.

ż Case CaseApp. By inversion we have:

ś Γ ⊢tm case e of p → u ∶ σ → τ

ś Γ ⊢alt p i → u i ∶ T τ′ → (σ → τ)

ś Γ, ∆′ , x′ ∶ σ ′ ⊢tm u i ∶ σ → τ

ś Γ ⊢tm e′ ∶ σ

We can show:

ś Γ, , ∆′ , x′ ∶ σ ′ , x ∶ σ ⊢tm u i x ∶ τ, by T_App.

ś Γ, x ∶ σ ⊢alt p i → (u i x) ∶ T τ′ → τ, by T_AltCon.

ś Γ, x ∶ σ ⊢tm case e of p → (u x) ∶ τ, by T_Case.

ś Γ ⊢bind x ∶ σ ← e′, by T_Bind.

ś Γ ⊢tm let {x ∶ σ ≙ e′} in (case e of p → (u x)) ∶ τ, by T_LetRec.

ż Case BindNonRep. By inversion we have:

ś Γ, Γ
b
, x i ∶ σi ⊢tm u ∶ τ, where Γ

b
represents all let-binders except

x i ∶ σi .

We can show:

ś Γ, x i ∶ σi ⊢tm let {b1; ...; b i−1; b i+1; ...; bn} in u ∶ τ, by T_LetRec.

ś Γ ⊢tm (let {b1; ...; b i−1; b i+1; ...; bn} in u)∥e i/x i∥ ∶ τ, by the substitu-
tion lemma (lemma D.1.1).

ż Case LiftNonRep. By inversion we have:

ś Γ, Γ
b
, x i ∶ σi ⊢tm u ∶ τ, where Γ

b
represents all let-binders except

x i ∶ σi .

We can show:

193

D
.1
ś
T
y
pe

pr
es
er
va
t
io
n

ś Γ ⊢tm f ∶ τ′ → σi , by the deinition of free variables, and the repeated
application of the T_Abs rule.

ś Γ ⊢tm f z ∶ σi , by T_App.
ś Γ, x i ∶ σi ⊢tm let {b1; ...; b i−1; b i+1; ...; bn} in u ∶ τ, by T_LetRec.
ś Γ ⊢tm (let {b1; ...; b i−1; b i+1; ...; bn} in u)∥(f z)/x i∥ ∶ τ, by the substi-
tution lemma (lemma D.1.1).

ż Case TypeSpec. By inversion we have:

ś Γ ⊢tm f e ∶ ∀a ∶ κ → τ.
ś Γ ⊢tm f ∶ τ′ → ∀a ∶ κ → τ

ś Γ ⊢tm e i ∶ τ′i
ś Γ ⊢ty σ

′ ∶ κ

We can show:

ś Γ, x ∶ τ′ ⊢tm (Γ@ f) x σ ∶ τ, by: the precondition that globally bound
expression are correctly typed, repeated use of T_App, followed by
T_TApp.

ś Γ ⊢tm λx ∶ τ′(Γ@ f) x σ ∶ τ′ → τ, by repeated use of T_Abs.
ś Γ ⊢tm f ′ e ∶ τ, by repeated use of T_App.

ż he casesCoSpec,NonRepSpec, andCastSpec, are analogous to the above
case.

ż Case CaseCase. By inversion we have:

ś Γ ⊢tm case e of {p1 → u1; ...; pn → un} ∶ T τ′

ś Γ ⊢tm e ∶ T ′ τ′′

ś Γ ⊢alt p i → u i ∶ T ′ τ′′ → T τ′

ś Γ, ∆′ , x ∶ σ ′ ⊢tm u i ∶ T τ′

ś Γ ⊢alt p′i → u′i ∶ T
′ τ′ → τ

We can show:

ś Γ, ∆′ , x ∶ σ ′ ⊢tm case u i of p′ → u′ ∶ τ, by T_Case.

ś Γ ⊢alt p i → case u i of p′ → u′ ∶ T ′ τ′′ → τ, by T_AltCon.
ś Γ ⊢tm

case e of {p1 → case u1 of p′ → u′; ...; pn → case un of p′ → u′} ∶ τ,
by T_Case.

ż Case InlineNonRep is correct by the precondition on the lemma, that for
every expression binding f i ∶ σi ≙ e i in Γ, Γ ⊢tm e i ∶ σi holds.

ż Case, the third variant of CaseCon. By inversion we have:

ś Γ ⊢alt p0 → u0 ∶ T τ′ → τ.
ś Γ, ∆′ , x ∶ σ ′ ⊢tm u0 ∶ τ.

We can show:

ś Γ ⊢tm u0 ∶ τ, by the deinition of free variables.

194

A
ppen

d
ix

D
ś
P
r
eservat

io
n
o
f
t
h
e
r
ew

r
it
e
ru

les

D.2 Semantics preservation

We need to show that the transformations do not change themeaning of expression,

that they preserve the semantics. We state our semantics preservations theorem as

follows:

heorem: D.2.1. Let e Ð→∗ e′ be the repeated application of the step reduction rules
(appendix C) on the expression e to get a new expression e′. Let et be the result of
applying one of the rewrite rules to e, then there exists an e′ such that e Ð→∗ e′ and
et Ð→

∗ e′.

Proof. Many of the rewrite rules are a direct implementation of the operational

semantics of System FC, and thus semantics preserving by deinition.

We thus present the cases that are not a direct implementation of the operational
semantics:

ż CaseCase transformation:

ś he precedent is: case (case e of p → u) of p′ → u′.

ś he antecedent is: case e of p → case u of p′ → u′.

We show that the transformation is semantics preserving by showing that

both the precedent and the antecedent reduce to the same alternative in

p′ → u′, u j . We demonstrate the reduction steps for those situations where

the subjects and alternatives always reduce to a constructor application,

which we indicate by K∗.

he precedent reduces to:

1.

2.

1.
case (case e of p → u) of p′ → u′ Ð→∗ case (case K∗ of p → u) of p′ → u′

case (case e of p → u) of p′ → u′ Ð→∗ case u i of p′ → u′

case (case e of p → u) of p′ → u′ Ð→∗ case K∗i of p′ → u′

case (case e of p → u) of p′ → u′ Ð→∗ u′j

he antecedent reduces to:

1.

2.

1.
case e of p → case u of p′ → u′ Ð→∗ case K∗ of p → case u of p′ → u′

case e of p → case u of p′ → u′ Ð→∗ case u i of p′ → u′

case e of p → case u of p′ → u′ Ð→∗ case K∗i of p′ → u′

case e of p → case u of p′ → u′ Ð→∗ u′j

Here:

1. Indicates the repeated application of the S_Case rule, followed by
either the S_CaseMatch or S_CaseDef rule.

2. Indicates the repeated application of the S_Case rule.

he cases where the subjects and alternatives reduce to: coerced values,

let-expressions, or primitive applications, are straightforward and similarly

tedious.

195

D
.2
ś
Se
m
a
n
t
ic
s
pr
es
er
va
t
io
n

ż he proofs for the other transformations are similarly straightforward and

tedious.

196

197

Acronyms

A ALU arithmetic logic unit

ANF administrative normal form

ASIC application-speciic integrated-circuit

AST abstract syntax tree

B BSV BlueSpec SystemVerilog

C CλaSH CAES language for synchronous hardware

CPU central processing unit

CSE common sub-expression elimination

D DSL domain speciic language

DSP digital signal processing

F FFT fast fourier transform

FIFO irst-in-irst-out bufer

FIR inite impulse response

FPGA ield programmable gate array

G GADT generalized algebraic data type

GHC Glasgow Haskell compiler

GPU graphics processing unit

H HDL hardware description language

HLS high-level synthesis

L LHS let hand side

LUT look-up table

M MAC multiply-and-accumulate

R RHS right hand side

RTL register-transfer level

S S.A.C. stand alone complex

SMxV sparse matrix-vector multiplication

T TRS term rewrite system

V VHDL VHSIC hardware description language (HDL)

VHSIC very high speed integrated circuit

VLSI very-large-scale integration

198

199

Bibliography

[1] A. Acosta. ForSyDe tutorial. https://forsyde.ict.kth.se/trac/wiki/

ForSyDe/Haskell/ForSyDeTutorial, January 2011. (Cited on page 31).

[2] V. Akella and G. Gopalakrishnan. From Process-Oriented Functional Speciications
to Eicient Asynchronous Circuits. In Proceedings of the 5th International Conference
on VLSI Design, pages 324ś325. IEEE, January 1992. doi: 10.1109/ICVD.1992.658072.
(Cited on page 7).

[3] P. J. Ashenden. he Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 3rd edition, 2008. ISBN 978-0-12-088785-9. (Cited on
page 16).

[4] C. Baaij. CλasH: From Haskell To Hardware. Master’s thesis, University of Twente,
December 2009. URL http://essay.utwente.nl/59482/. (Cited on page 13).

[5] H. Barendregt. he Lambda Calculus: Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics. Elsevier Science, 1985. ISBN 978-0-08-093375-7.
(Cited on page 25).

[6] J. M. Bell, F. Bellegarde, and J. Hook. Type-Driven Defunctionalization. In Proceed-
ings of the 2nd International Conference on Functional Programming (ICFP), pages
25ś37, 1997. doi: 10.1145/258948.258953. (Cited on page 98).

[7] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in Haskell.
In Proceedings of the 3rd International Conference on Functional Programming (ICFP),
pages 174ś184. ACM, 1998. ISBN 1-58113-024-4. doi: 10.1145/289423.289440. (Cited
on pages 10, 26, and 27).

[8] T. Bollaert. Catapult Synthesis: A Practical Introduction to Interactive C Synthesis.
In P. Coussy and A. Morawiec, editors, High-Level Synthesis, pages 29ś52. Springer
Netherlands, 2008. ISBN 978-1-4020-8587-1. doi: 10.1007/978-1-4020-8588-8_3.
(Cited on page 4).

[9] E. C. Brady. IDRIS Ð: Systems Programming Meets Full Dependent Types. In Pro-
ceedings of the 5th Workshop on Programming Languages Meets Program Veriication
(PLPV), PLPV ’11, pages 43ś54, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0487-0. doi: 10.1145/1929529.1929536. (Cited on page 62).

[10] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D. Hachtel.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Norwell, MA, USA, 1984. ISBN 0898381649. (Cited on page 91).

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/Haskell/ForSyDeTutorial
https://forsyde.ict.kth.se/trac/wiki/ForSyDe/Haskell/ForSyDeTutorial
http://dx.doi.org/10.1109/ICVD.1992.658072
http://essay.utwente.nl/59482/
http://dx.doi.org/10.1145/258948.258953
http://dx.doi.org/10.1145/289423.289440
http://dx.doi.org/10.1007/978-1-4020-8588-8_3
http://dx.doi.org/10.1145/1929529.1929536

200

B
ib
lio

g
r
a
ph

y

[11] M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated Type Synonyms. In
Proceedings of the 10th International Conference on Functional Programming (ICFP),
ICFP ’05, pages 241ś253, New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7. doi:
10.1145/1086365.1086397. (Cited on pages 60 and 75).

[12] J. Cong, B. Liu, S. Neuendorfer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 30(4):473ś491, April 2011.
ISSN 0278-0070. doi: 10.1109/TCAD.2011.2110592. (Cited on page 6).

[13] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An Introduction to High-Level
Synthesis. IEEE Design & Test of Computers, 26(4):8ś17, 2009. ISSN 0740-7475. doi:
10.1109/MDT.2009.69. (Cited on page 3).

[14] Design, Automation&Test in Europe (DATE) conference. University Booth 2011 Pro-
gramme. http://www.dateconference.com/date11/node/4165, March 2011.
(Cited on page 141).

[15] R. A. Eisenberg and S. Weirich. Dependently Typed Programming with Singletons.
In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 117ś130, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1574-6. doi: 10.1145/2364506.2364522. (Cited
on page 62).

[16] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed Type Families
with Overlapping Equations. In Proceedings of the 41st Symposium on Principles of
Programming Languages (POPL), pages 671ś683, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535856. (Cited on page 75).

[17] S. Frankau. Hardware Synthesis from a Stream-Processing Functional Language. PhD
thesis, University of Cambridge, July 2004. (Cited on page 72).

[18] M. Gerards, J. Kuper, A. Kokkeler, and B. Molenkamp. Streaming reduction circuit.
In Proceedings of the 12th conference on Digital System Design (DSD), pages 287ś292,
Los Alamitos, CA, USA, August 2009. IEEE Computer Society. ISBN 978-0-7695-
3782-5. doi: 10.1109/DSD.2009.141. (Cited on pages 136 and 137).

[19] D. R. Ghica. Geometry of Synthesis: A structured approach to VLSI design. In
Proceedings of the 34th annual Symposium on Principles of Programming Languages
(POPL), pages 363ś375. ACM, 2007. ISBN 1-59593-575-4. doi: 10.1145/1190216.1190269.
(Cited on page 22).

[20] D. R. Ghica and A. Smith. Geometry of Synthesis II: From Games to Delay-
Insensitive Circuits. In Proceedings of the 26th Conference on the Mathematical Foun-
dations of Programming Semantics (MFPS), volume 265 of Electronic Notes in heo-
retical Computer Science, pages 301ś324. 2010. doi: 10.1016/j.entcs.2010.08.018. (Not
cited).

[21] D. R.Ghica andA. Smith. Geometry of Synthesis III: ResourceManagementhrough
Type Inference. In Proceedings of the 38th Symposium on Principles of Program-
ming Languages (POPL), pages 345ś356. ACM, 2011. ISBN 978-1-4503-0490-0. doi:
10.1145/1926385.1926425. (Cited on pages 22 and 24).

http://dx.doi.org/10.1145/1086365.1086397
http://dx.doi.org/10.1145/1086365.1086397
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.1109/MDT.2009.69
http://www.date-conference.com/date11/node/4165
http://dx.doi.org/10.1145/2364506.2364522
http://dx.doi.org/10.1145/2535838.2535856
http://dx.doi.org/10.1109/DSD.2009.141
http://dx.doi.org/10.1145/1190216.1190269
http://dx.doi.org/10.1016/j.entcs.2010.08.018
http://dx.doi.org/10.1145/1926385.1926425
http://dx.doi.org/10.1145/1926385.1926425

201

B
ib
li
o
g
r
a
ph

y

[22] D. R. Ghica and A. Smith. Verity ś he Geometry of Synthesis. http://www.

veritygos.org, January 2013. (Cited on pages 22 and 67).

[23] D. R. Ghica, A. Smith, and S. Singh. Geometry of Synthesis IV: Compiling Aine
Recursion into Static Hardware. In Proceedings of the 16th International Conference on
Functional Programming (ICFP), pages 221ś233. ACM, 2011. ISBN 978-1-4503-0865-6.
doi: 10.1145/2034773.2034805. (Cited on pages 22, 25, and 52).

[24] A. Gill. Type-Safe Observable Sharing in Haskell. In Proceedings of the 2nd Haskell
Symposium, pages 117ś128. ACM, September 2009. ISBN 978-1-60558-508-6. doi:
10.1145/1596638.1596653. (Cited on pages 10 and 27).

[25] A. Gill. kansas-lava: Kansas Lava is a hardware simulator and VHDL generator.
http://hackage.haskell.org/package/kansaslava, November 2011. (Cited
on page 26).

[26] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling. Introducing
Kansas Lava. Submitted to he International Symposia on Implementation and
Application of Functional Languages (IFL), November 2009. URL http://ittc.

ku.edu/~andygill/papers/kansaslavaifl09.pdf. (Cited on pages 26, 27,
136, and 159).

[27] A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp. Types and Type Families for
Hardware Simulation and Synthesis. In R. Page, Z. Horváth, and V. Zsók, editors,
Trends in Functional Programming, volume 6546 of Lecture Notes in Computer Science
(LNCS), pages 118ś133. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-22940-4.
doi: 10.1007/978-3-642-22941-1_8. (Cited on pages 26 and 27).

[28] Haskell.org. Template Haskell Wiki. http://www.haskell.org/haskellwiki/

Template_Haskell, October 2013. (Cited on pages 27, 31, 144, and 145).

[29] R. Herveille. CORDIC core. http://opencores.org/project,cordic, Septem-
ber 2014. (Cited on page 147).

[30] R. Herveille. I2C controller core. http://opencores.org/project,i2c, Septem-
ber 2014. (Cited on pages 142, 147, and 159).

[31] J. C. Hoe and Arvind. Hardware Synthesis from Term Rewriting Systems. In Pro-
ceedings of the 10th International Conference on VLSI, pages 595ś619, 1999. (Cited on
page 21).

[32] J. Hughes. Generalising Monads to Arrows. Science of Computer Programming, 37
(1-3):67ś111, May 2000. ISSN 0167-6423. doi: 10.1016/S0167-6423(99)00023-4. (Cited
on page 159).

[33] IEEE Standard. Verilog Hardware Description Language, 2005. (Cited on page 18).

[34] IEEE Standard. VHDL Language Reference Manual, 2008. (Cited on page 16).

[35] IEEE Standard. SystemVerilog ś Uniied Hardware Design, Speciication, and Verii-
cation Language, 2012. (Cited on page 20).

http://www.veritygos.org
http://www.veritygos.org
http://dx.doi.org/10.1145/2034773.2034805
http://dx.doi.org/10.1145/1596638.1596653
http://dx.doi.org/10.1145/1596638.1596653
http://hackage.haskell.org/package/kansas-lava
http://ittc.ku.edu/~andygill/papers/kansas-lava-ifl09.pdf
http://ittc.ku.edu/~andygill/papers/kansas-lava-ifl09.pdf
http://dx.doi.org/10.1007/978-3-642-22941-1_8
http://www.haskell.org/haskellwiki/Template_Haskell
http://www.haskell.org/haskellwiki/Template_Haskell
http://opencores.org/project,cordic
http://opencores.org/project,i2c
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

202

B
ib
lio

g
r
a
ph

y

[36] X. Jin. Implementation of the MUSIC Algorithm in CλaSH. Master’s thesis, June
2014. URL http://essay.utwente.nl/65225/. (Cited on page 135).

[37] E. Kmett. Lenses, Folds and Traversals. http://lens.github.io, September 2014.
(Cited on pages 144 and 165).

[38] M. Kooijman. Haskell as a higher order structural hardware description lan-
guage. Master’s thesis, University of Twente, December 2009. URL http://essay.
utwente.nl/59381/. (Cited on pages 13 and 59).

[39] J. Kuper and R. Wester. N Queens on an FPGA: Mathematics, Programming, or
Both? In Communicating Process Architectures (CPA), United Kingdom, August
2014 (to appear). Open Channel Publishing. (Cited on page 136).

[40] S. Mac Lane. Categories for theWorkingMathematician. Number 5 in Graduate Texts
in Mathematics. New York, 1971. ISBN 0387900357. (Cited on page 143).

[41] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future.
IEEE Design & Test of Computers, 26(4):18ś25, 2009. ISSN 0740-7475. doi:
10.1109/MDT.2009.83. (Cited on pages 4 and 6).

[42] C. Mcbride and R. Paterson. Applicative Programming with Efects. Journal
of Functional Programming, 18(1):1ś13, January 2008. ISSN 0956-7968. doi:
10.1017/S0956796807006326. (Cited on pages 57 and 165).

[43] M. C. McFarland, A. C. Parker, and R. Camposano. he high-level synthesis of
digital systems. Proceedings of the IEEE, 78(2):301ś318, 1990. ISSN 0018-9219. doi:
10.1109/5.52214. (Cited on page 3).

[44] G. H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045ś1079, 1955. ISSN 1538-7305. doi: 10.1002/j.1538-
7305.1955.tb03788.x. (Cited on pages 30 and 59).

[45] A. Megacz. Hardware Design with Generalized Arrows. In A. Gill and J. Hage,
editors, Implementation and Application of Functional Languages, volume 7257 of
Lecture Notes in Computer Science, pages 164ś180. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-34406-0. doi: 10.1007/978-3-642-34407-7_11. (Cited on page 160).

[46] N. Mitchell and C. Runciman. Losing Functions without Gaining Data. In Proceed-
ings of the 2nd Symposium on Haskell, pages 13ś24. ACM, September 2009. ISBN
978-1-60558-508-6. (Cited on page 99).

[47] A. Mycrot and R. Sharp. A Statically Allocated Parallel Functional Language. In
Proceedings of the 27th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 1853 of Lecture Notes in Computer Science (LNCS), pages
37ś48. Springer-Verlag, 2000. ISBN 978-3-540-67715-4. doi: 10.1007/3-540-45022-
X_5. (Cited on pages 21, 22, and 66).

[48] A. Niedermeier. A Fine-Grained Parallel Datalow-Inspired Architecture for Stream-
ing Applications. PhD thesis, Univ. of Twente, Enschede, August 2014. (Cited on
page 136).

http://essay.utwente.nl/65225/
http://lens.github.io
http://essay.utwente.nl/59381/
http://essay.utwente.nl/59381/
http://dx.doi.org/10.1109/MDT.2009.83
http://dx.doi.org/10.1109/MDT.2009.83
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1109/5.52214
http://dx.doi.org/10.1109/5.52214
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1007/978-3-642-34407-7_11
http://dx.doi.org/10.1007/3-540-45022-X_5
http://dx.doi.org/10.1007/3-540-45022-X_5

203

B
ib
li
o
g
r
a
ph

y

[49] R. S. Nikhil. Bluespec: A General-Purpose Approach to High-Level Synthesis Based
on Parallel Atomic Transactions. In Philippe Coussy and Adam Morawiec, editor,
High-Level Synthesis - From Algorithm to Digital Circuit, pages 129ś146. Springer
Netherlands, 2008. (Cited on page 20).

[50] OpenCores. WISHBONE System-on-Chip Interconnect. http://opencores.org/
opencores,wishbone, June 2010. (Cited on page 142).

[51] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell, chapter Mon-
ads. O’Reilly Media, Inc., 2008. ISBN 978-0-596-51498-3. URL http://book.

realworldhaskell.org/read/monads.html. (Cited on pages 144 and 165).

[52] R. Paterson. A New Notation for Arrows. In Proceedings of the 6th International
Conference on Functional Programming (ICFP), ICFP ’01, pages 229ś240, New York,
NY, USA, 2001. ACM. ISBN 1-58113-415-0. doi: 10.1145/507635.507664. (Cited on
pages 68 and 159).

[53] R. Paterson. Arrows and Computation. In JeremyGibbons andOege deMoor, editor,
he Fun of Programming, pages 201ś222. Palgrave, 2003. (Cited on page 68).

[54] S. Peyton Jones and A. Santos. Compilation by Transformation in the Glasgow
Haskell Compiler. In Functional Programming, Glasgow 1994, Workshops in Com-
puting, pages 184ś204. Springer London, 1995. ISBN 978-3-540-19914-4. doi:
10.1007/978-1-4471-3573-9_13. (Cited on page 99).

[55] R. Pope and B. Yorgey. irst-class-patterns: First class patterns and pat-
tern matching, using type families. http://hackage.haskell.org/package/

firstclasspatterns, July 2013. (Cited on pages 28 and 29).

[56] F. Pottier and N. Gauthier. Polymorphic Typed Defunctionalization. In Proceedings
of the 31st Symposium on Principles of Programming Languages (POPL), pages 89ś98.
ACM, 2004. ISBN 1-58113-729-X. doi: 10.1145/964001.964009. (Cited on page 98).

[57] J. C. Reynolds. Deinitional Interpreters for Higher-Order Programming Languages.
In Proceedings of the 25th ACM National Conference, pages 717 ś 740. ACM Press,
1972. (Cited on page 98).

[58] I. Sander and A. Jantsch. SystemModeling and Transformational Design Reinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(1):17ś32, January 2004. (Cited on pages 30 and 159).

[59] R. Sharp and A. Mycrot. he FLaSH Compiler: Eicient Circuits from Functional
Speciications. Technical report, AT&T Research Laboratories Cambridge, 2000.
(Cited on page 21).

[60] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. In Proceed-
ings of the 2002 Workshop on Haskell, pages 1ś16. ACM, 2002. ISBN 1-58113-605-6.
doi: 10.1145/581690.581691. (Cited on pages 27 and 31).

[61] J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. Technical report, Pittsburgh, PA, USA, 1994. URL http://www.

cs.cmu.edu/~quakepapers/painlessconjugategradient.pdf. (Cited on
page 136).

http://opencores.org/opencores,wishbone
http://opencores.org/opencores,wishbone
http://book.realworldhaskell.org/read/monads.html
http://book.realworldhaskell.org/read/monads.html
http://dx.doi.org/10.1145/507635.507664
http://dx.doi.org/10.1007/978-1-4471-3573-9_13
http://dx.doi.org/10.1007/978-1-4471-3573-9_13
http://hackage.haskell.org/package/first-class-patterns
http://hackage.haskell.org/package/first-class-patterns
http://dx.doi.org/10.1145/964001.964009
http://dx.doi.org/10.1145/581690.581691
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

204

B
ib
lio

g
r
a
ph

y

[62] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. System F
with Type Equality Coercions. In Proceedings of the 2007 International Workshop
on Types in Languages Design and Implementation (TLDI), pages 53ś66, New York,
NY, USA, 2007. ACM. ISBN 1-59593-393-X. doi: 10.1145/1190315.1190324. (Cited on
pages 74, 75, and 79).

[63] S. Sutheland, S. Davidmann, and P. Flacke. SystemVerilog for Design. Springer US,
2nd edition, 2006. ISBN 978-0-387-36495-7. doi: 10.1007/0-387-36495-1. (Cited on
page 18).

[64] he GHC Team. he GHC Compiler, version 7.6.3. http://haskell.org/ghc,
April 2013. (Cited on page 12).

[65] heGHCTeam. GHCAPI. http://www.haskell.org/ghc/docs/latest/html/
libraries/ghc/index.html, September 2014. (Cited on pages 74 and 75).

[66] F. Van Nee. To a new hardware design methodology: A case study of the cochlea
model. Master’s thesis, March 2014. URL http://essay.utwente.nl/64835/.
(Cited on page 135).

[67] J. E. Volder. he CORDIC Trigonometric Computing Technique. IRE Transactions
on Electronic Computers, EC-8(3):330ś334, September 1959. ISSN 0367-9950. doi:
10.1109/TEC.1959.5222693. (Cited on page 147).

[68] S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative Type Ab-
straction and Type-level Computation. In Proceedings of the 38th Annual Symposium
on Principles of Programming Languages (POPL), pages 227ś240, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926411. (Cited on
pages 74, 75, and 191).

[69] S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with Explicit Kind Equality. In
Proceedings of the 18th International Conference on Functional Programming (ICFP),
pages 275ś286, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi:
10.1145/2500365.2500599. (Cited on pages 74, 75, 78, 80, 82, 86, 177, 181, and 185).

[70] R. Wester and J. Kuper. A space/time tradeof methodology using higher-order func-
tions. In 22nd International Conference on Field Programmable Logic and Applications
(FPL), pages 1ś2, USA, 2013. IEEE Computer Society. (Cited on page 136).

[71] R. Wester and J. Kuper. Design space exploration of a particle ilter using higher-
order functions. In Reconigurable Computing: Architectures, Tools, and Applications,
volume 8405 of Lecture Notes in Computer Science, pages 219ś226. Springer Verlag,
London, United Kingdom, 2014. (Cited on page 135).

[72] R. Wester and J. Kuper. Deriving stencil hardware accelerators from a single higher-
order function. In Communicating Process Architectures (CPA), United Kingdom,
August 2014 (to appear). Open Channel Publishing. (Cited on page 135).

[73] R. Wester, D. Sarakiotis, E. Kooistra, and J. Kuper. Speciication of APERTIF
Polyphase Filter Bank in CλaSH. In Communicating Process Architectures (CPA),
pages 53ś64, United Kingdom, August 2012. Open Channel Publishing. (Cited on
page 135).

http://dx.doi.org/10.1145/1190315.1190324
http://dx.doi.org/10.1007/0-387-36495-1
http://haskell.org/ghc
http://www.haskell.org/ghc/docs/latest/html/libraries/ghc/index.html
http://www.haskell.org/ghc/docs/latest/html/libraries/ghc/index.html
http://essay.utwente.nl/64835/
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1145/1926385.1926411
http://dx.doi.org/10.1145/2500365.2500599
http://dx.doi.org/10.1145/2500365.2500599

205

B
ib
li
o
g
r
a
ph

y

[74] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype Constructors. In Proceed-
ings of the 30th Symposium on Principles of Programming Languages, pages 224ś235,
New York, NY, USA, 2003. ACM. ISBN 1-58113-628-5. doi: 10.1145/604131.604150.
(Cited on page 75).

[75] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães.
Giving Haskell a Promotion. In Proceedings of the 8th Workshop on Types in Language
Design and Implementation (TLDI), TLDI ’12, pages 53ś66, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1120-5. doi: 10.1145/2103786.2103795. (Cited on pages 61, 74,
and 75).

[76] S. Zeirov. HHDL: Hardware Description Language embedded in Haskell. http:
//hackage.haskell.org/package/HHDL, December 2011. (Cited on pages 28
and 29).

[77] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong. AutoPilot: A Platform-
Based ESL Synthesis System. In P. Coussy and A. Morawiec, editors, High-Level
Synthesis, pages 99ś112. Springer Netherlands, 2008. ISBN 978-1-4020-8587-1. doi:
10.1007/978-1-4020-8588-8_6. (Cited on page 4).

[78] G. Érdi. A Brainfuck CPU in FPGA. https://github.com/gergoerdi/

brainfuckcpufpga, January 2013. (Cited on page 28).

http://dx.doi.org/10.1145/604131.604150
http://dx.doi.org/10.1145/2103786.2103795
http://hackage.haskell.org/package/HHDL
http://hackage.haskell.org/package/HHDL
http://dx.doi.org/10.1007/978-1-4020-8588-8_6
http://dx.doi.org/10.1007/978-1-4020-8588-8_6
https://github.com/gergoerdi/brainfuck-cpu-fpga
https://github.com/gergoerdi/brainfuck-cpu-fpga

206

207

List of Publications

[CB:1] C. P. R. Baaij, M. Kooijman, J. Kuper, M. E. T. Gerards, and E. Molenkamp. Tool

Demonstration: CLasH - From Haskell to Hardware. In Proceedings of the 2nd

Symposium on Haskell, page 3. ACM, 2009. doi: 10.1145/1596638.1667736.

[CB:2] G. J. M. Smit, J. Kuper, and C. P. R. Baaij. A mathematical approach towards hard-
ware design. In P. M. Athanas, J. Becker, J. Teich, and I. Verbauwhede, editors,
Dagstuhl Seminar on Dynamically Reconigurable Architectures, number 10281 in
Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, December 2010.

[CB:3] A. Niedermeier, R. Wester, K. C. Rovers, C. P. R. Baaij, J. Kuper, and G. J. M.
Smit. Designing a datalow processor using CλaSH. In 28th Norchip Con-
ference, page 69. IEEE Circuits and Systems Society, November 2010. doi:
10.1109/NORCHIP.2010.5669445.

[CB:4] A. Niedermeier, R. Wester, C. P. R. Baaij, J. Kuper, and G. J. M. Smit. Compar-
ing CλaSH and VHDL by implementing a datalow processor. In Proceedings
of the Workshop on PROGram for Research on Embedded Systems and Sotware
(PROGRESS), pages 216ś221. Technology Foundation STW, November 2010.

[CB:5] J. Kuper,C.P.R. Baaij, M.Kooijman, andM. E. T.Gerards. Exercises in architecture
speciication using CλaSH. In Proceedings of Forum on Speciication and Design
Languages (FDL), pages 178ś183. ECSI Electronic Chips & Systems design Initiative,
September 2010. doi: 10.1049/ic.2010.0149.

[CB:6] M. E. T. Gerards, C. P. R. Baaij, J. Kuper, andM. Kooijman. Hiding State in CλaSH
Hardware Descriptions. In Preproceedings of the 22nd Symposium on Implementa-
tion and Application of Functional Languages (IFL), pages 107ś119. Utrecht Univer-
sity, August 2010.

[CB:7] C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink, andM. E. T. Gerards. CλaSH:
Structural Descriptions of Synchronous Hardware using Haskell. In Proceedings of
the 13th Conference on Digital System Design (DSD), pages 714ś721. IEEE Computer
Society, September 2010. doi: 10.1109/DSD.2010.21.

[CB:8] J. Kuper, C. P. R. Baaij, M. Kooijman, and M. E. T. Gerards. Architecture Speciica-
tions in CλaSH. In T. J. Kaźmierski and A. Morawiec, editors, System Speciication
andDesign Languages, volume 106 of LectureNotes in Electrical Engineering (LNEE),
pages 191ś206. Springer New York, December 2011. doi: 10.1007/978-1-4614-1427-
8_12.

http://dx.doi.org/10.1145/1596638.1667736
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1049/ic.2010.0149
http://dx.doi.org/10.1109/DSD.2010.21
http://dx.doi.org/10.1007/978-1-4614-1427-8_12
http://dx.doi.org/10.1007/978-1-4614-1427-8_12

208

L
ist

o
f
P
u
b
lic

at
io
n
s

[CB:9] M. E. T. Gerards, C. P. R. Baaij, J. Kuper, andM. Kooijman. Higher-Order Abstrac-
tion in Hardware Descriptions with CλaSH. In P. Kitsos, editor, Proceedings of the
14th Conference on Digital System Design (DSD), pages 495ś502. IEEE Computer
Society, August 2011. doi: 10.1109/DSD.2011.69.

[CB:10] C. P. R. Baaij, J. Kuper, and L. Schubert. SoOSiM: Operating System and Program-
ming Language Exploration. In G. Lipari and T. Cucinotta, editors, Proceedings of
the 3rd International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time System (WATERS), pages 63ś68, 2012.

[CB:11] R. Wester, C. P. R. Baaij, and J. Kuper. A two step hardware design method us-
ing CλaSH. In 22nd International Conference on Field Programmable Logic and
Applications (FPL), pages 181ś188. IEEE Computer Society, August 2012. doi:
10.1109/FPL.2012.6339258.

[CB:12] B. N. Uchevler, K. Svarstad, J. Kuper, andC. P. R. Baaij. System-Level Modelling of
Dynamic Reconigurable Designs using Functional Programming Abstractions. In
14th International Symposium on Quality Electronic Design (ISQED), pages 379ś385.
IEEE, March 2013. doi: 10.1109/ISQED.2013.6523639.

[CB:13] C.P.R. Baaij and J. Kuper. Using Rewriting to Synthesize Functional Languages
to Digital Circuits. In Jay McCarthy, editor, Trends in Functional Programming
(TFP), Provo, UT, USA, May 14-16, 2013, Revised Selected Papers, volume 8322 of
LectureNotes in Computer Science (LNCS), pages 17ś33. Springer-Verlag, 2014. ISBN
978-3-642-45339-7. doi: 10.1007/978-3-642-45340-3_2.

This thesis

@phdthesis{baaij2015:thesis,

author={Baaij, Christiaan P.R.},

title={Digital Circuits in CλaSH Functional
Specifications and TypeDirected Synthesis},

school={Universiteit Twente},

address={PO Box 217, 7500AE Enschede, The Netherlands},

year={2015},

month={jan},

day={23},

number={CTIT Ph.D.thesis series No. 14335},

issn={13813617},

isbn={9789036538039},

doi={10.3990/1.9789036538039}

}

http://dx.doi.org/10.1109/DSD.2011.69
http://dx.doi.org/10.1109/FPL.2012.6339258
http://dx.doi.org/10.1109/FPL.2012.6339258
http://dx.doi.org/10.1109/ISQED.2013.6523639
http://dx.doi.org/10.1007/978-3-642-45340-3_2

209

C
ASH ב ומכ אל הז ,השק הז תא תושעל ידכ

רפס

λ
λ λ

λ

λ
λ

ISBN 978-90-365-3803-9

9 789036 538039

	Front cover
	Colophon
	Abstract
	Samenvatting
	Dankwoord
	Contents
	1 Introduction
	2 Hardware Description Languages
	3 CAES Language for Synchronous Hardware
	4 Type-Directed Synthesis
	5 Advanced aspects of circuit design in CLaSH
	6 Conclusions
	A First Class Patterns in Kansas Lava
	B Synchronisation Primitive
	C System FC
	D Preservation of the rewrite rules
	Acronyms
	Bibliography
	List of Publications
	Back cover

